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Critical Thinking in Aquifer Test Interpretation 
 
The significance and interpretation of recovery data 
 
Christopher J. Neville 
S.S. Papadopulos & Associates, Inc. 
Last update: April 28, 2025 
 
Overview 
 
Monitoring the recovery after a pumping test is generally mandated; however, in our 
experience we have generally found that little attention is paid to the data that are 
collected. Recovery data frequently provide some of the most reliable information from 
pumping tests and may provide important insights into aquifer response that cannot be 
obtained from the pumping phase of the test. These notes have been prepared to highlight 
the importance of recovery data and to review their interpretation. The final section of the 
notes is devoted to the use of recovery data to extend the effective duration of pumping. 
 
Outline 
 
1. The significance of recovery data 
2. The “smoothing effect” of recovery 
3. Interpretation of recovery data: The principle of superposition 
4. Cooper and Jacob (1946) straight-line analysis of recovery data 
5. Insights into aquifer response from recovery data 
6. The van der Kamp (1989) method to extend the effective duration of pumping 
7. Case study: Estevan, Saskatchewan 
8. Key points 
9. References 
 



 
  Page 2 of 40 

 
P:\0996-XX_GAC-MAC\Notes\05_Significance and interpretation of recovery data\05_02_Significance and interpretation of recovery 
data_Notes.docx 

1. The significance of recovery data 
 
Guidance documents for conducting pumping tests typically require that water levels be 
monitored for a specified time following the end of pumping. In our experience, 
frequently nothing is done with the recovery data after they have been collected, plotted, 
and included in the appendix to a report. In some cases, the cursory treatment of recovery 
data represents a genuine loss. In our opinion, the significance of recovery data is 
frequently overlooked. Recovery data frequently provide some of the most reliable 
information from pumping tests. 
 
There are at least five reasons to consider recovery data. 
 
• In some cases, the only data available are recovery data. 
 
• Recovery data provide a useful check on the reliability of the drawdown observations 

and on the interpretations drawn from the drawdown data. 
 
• Recovery measurements are largely free of the noise caused by small variations in the 

pumping rate at the early stages of a pumping test. 
 
• Recovery measurements can be used to assess whether there was a background trend 

in water levels during a pumping test. 
 
• Recovery data may help diagnose the presence of hydrologic boundaries. 
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2. The “smoothing effect” of recovery 
 
An important feature of recovery data is that they are largely free of the noise that arises 
from irregularities in the pumping rate at early time. At the beginning of a constant-rate 
pumping test it is common to throttle the pump valve to achieve a constant rate. Two 
hypothetical examples are presented to illustrate how variations in the pumping rate are 
smoothed during recovery. 
 
Example 1 
 
A pumping test is conducted in an ideal aquifer that is 5 m thick, with a horizontal 
hydraulic conductivity of 10-5 m/sec and a specific storage of 10-5 m-1. The aquifer is 
pumped for just over 1 day and the drawdowns are monitored at a distance of 5 m from 
the pumping well. The pumping rate is held at a constant rate of about 10 USgpm, except 
for a brief period of adjustment during the first 10 minutes.  
 
The pumping history is tabulated below. 
 

Time 
(minutes) 

Pumping rate 
(USgpm) 

Pumping rate 
(m3/sec) 

0-5 19 1.210E-3 
5-10 14 9.075E-4 
10→ 10 6.309E-4 

 
The pumping history is also plotted in Figure 1. The deviations from the average 
pumping rate are brief. If this were an actual test, it is likely they would be missed 
altogether unless the pumping rate was being recorded continuously. 
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Figure 1. Pumping history for Example 1 
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The calculated drawdowns for an observation well 5 m from the pumping well are plotted 
in Figure 2. Because we have plotted the data on a semi-logarithmic time axis, we see 
that the variations in the pumping rate at the very start of the test appear to have a 
significant effect on the observed drawdowns. If we did not notice that the pumping rate 
had varied, we might not immediately recognize that the appropriate portion of the 
response over which the transmissivity should be estimated is from about 1,000 seconds 
onwards. 
 

 
 

Figure 2. Drawdowns calculated at r = 5 m 
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The complete time-drawdown record is presented in Figure 3. As shown in the figure, the 
fluctuations in the pumping rate at the start of the test have no effect on the drawdowns 
recorded following the end of pumping. 
 

 
 

Figure 3. Complete drawdown record for the example 
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The drawdown data following the end of pumping are shown in Figure 4. Two sets of 
calculated drawdowns are plotted. The first set corresponds to the drawdowns with the 
specified time-varying pumping history. The second set corresponds to the drawdowns 
that would have been observed if the pumping rate had remained constant at the rate that 
was maintained beyond the first 10 minutes of the test. Consistent with Figure 3, the 
drawdowns are almost identical; the early variations in the pumping rate do not influence 
the recovery portion of the response. 
 

 
 

Figure 4. Drawdowns at r = 5 m following the end of pumping 
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Example 2 
 
We use another hypothetical example to show that the smoothing during recovery occurs 
even when there are significant variations in the pumping rate throughout a test. The 
pumping rate for the second example is plotted in Figure 5. 
 

 
 

Figure 5. Pumping history for Example 2 
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The drawdowns calculated for the pumping well are shown in Figure 6. The solid line 
indicates the drawdowns for time-varying pumping. The dashed line indicates the 
drawdowns that would have been observed if the pumping rate had remained constant 
throughout at the average rate. The average rate is defined as the rate that yields the same 
cumulative volume at the end of pumping. For this example, the cumulative volume 
pumped over 3,000 seconds is 4.5 m3, so the average pumping rate is 0.0015 m3/sec. 
 

 
 

Figure 6. Comparison of drawdowns for time-varying and constant pumping 
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The drawdowns and subsequent recovery are plotted for both cases in Figure 7. The solid 
red line indicates the calculated response for time-varying pumping and the dashed blue 
line indicates the response for constant pumping. The similarity of the water levels after 
the cessation of pumping is striking. 
 

 
 

Figure 7. Drawdowns for the full duration of the pumping test 
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As shown in Figure 8, plotting the water levels during only the recovery period highlights 
the similarity of the water levels after the cessation of pumping. Although there are 
substantial variations in the pumping rate and calculated water levels during pumping, the 
responses during the recovery period are virtually indistinguishable. 
 

 
 

Figure 8. Comparison of recoveries for time-varying and constant pumping 
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3. Interpretation of recovery data: The principle of superposition 
 
Almost all of the theoretical models that are applied to match the data from pumping tests 
are founded on the assumption that the aquifer response to pumping is linear. 
Mathematically, this means that neither the coefficients appearing in the governing 
equation nor the boundary conditions depend upon the drawdown. The property of 
linearity has important implications for the interpretation of pumping tests. For linear 
problems, solutions to complex problems can be derived by adding together known 
solutions to simpler ones. The adding of solutions is called superposition. Solutions are 
superimposed in time for interpreting recovery data. 
 
Let us consider a well that is pumped at a constant rate Q for a duration toff, followed by 
the monitoring of recovery. The drawdown and recovery data can be interpreted by 
breaking the problem into two parts, as shown in Figure 9. 
 
• Part 1 - Drawdown period: pumping at a constant rate Q 
• Part 2 - Recovery period: pumping continues at a constant rate Q, but another well 

starts pumping at toff at a rate –Q. 
 
 

 
 

Figure 9. Illustration of superposition applied for a finite duration of pumping 



 
  Page 13 of 40 

 
P:\0996-XX_GAC-MAC\Notes\05_Significance and interpretation of recovery data\05_02_Significance and interpretation of recovery 
data_Notes.docx 

The application of superposition for pumping from a fully penetrating well in an ideal 
confined aquifer is illustrated in Figure 10. 
 

During pumping (t ≤ toff):  𝑠𝑠 = 𝑄𝑄
4𝜋𝜋𝜋𝜋

𝑊𝑊 �𝑟𝑟
2𝑆𝑆
4𝑇𝑇𝑇𝑇
� 

 

During recovery (t > toff): 𝑠𝑠 = 𝑄𝑄
4𝜋𝜋𝜋𝜋

𝑊𝑊 �𝑟𝑟
2𝑆𝑆
4𝑇𝑇𝑇𝑇
� − 𝑄𝑄

4𝜋𝜋𝜋𝜋
𝑊𝑊 � 𝑟𝑟2𝑆𝑆

4𝑇𝑇(𝑡𝑡−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜)
� 

 
Here t is the total elapsed time since the start of the test and (t-toff) is the elapsed time 
since the end of pumping, Q is the pumping rate, T is the transmissivity, S is the storage 
coefficient and r is the distance between the pumping well and the observation well. 
 

 
 
Figure 10. Application of the Theis (1935) solution for a finite duration of pumping 
 
 
Although superposition is illustrated here with the Theis solution, it is important to note 
that it can be applied for any linear aquifer model. For example, superposition can be 
applied to interpret recovery data from pumping tests in unconfined aquifers with the 
analysis of Neuman (1974), and in leaky aquifers with the models of Hantush and Jacob 
(1955), Hantush (1960), and Neuman and Witherspoon (1969). 
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4. Cooper and Jacob (1946) straight-line analysis of recovery data 
 
The Cooper-Jacob straight-line analysis has a particularly straightforward implementation 
for recovery analysis. The analysis provides both a simple means of estimating the 
transmissivity and of diagnosing the recovery response.  
 
Extension of the Cooper-Jacob approximation for a finite duration of pumping 
 
Recalling the Cooper-Jacob approximation of the Theis well function: 
 
 𝑊𝑊(𝑢𝑢) = −0.5772 − 𝑙𝑙𝑙𝑙{𝑢𝑢} 
 
the extension of the solution for the recovery period following pumping at a constant rate 
for a duration toff is given by: 
 

 𝑠𝑠 = 𝑄𝑄
4𝜋𝜋𝜋𝜋

�−0.5772− 𝑙𝑙𝑙𝑙 �𝑟𝑟
2𝑆𝑆
4𝑇𝑇𝑇𝑇
�� − 𝑄𝑄

4𝜋𝜋𝜋𝜋
�−0.5772− 𝑙𝑙𝑙𝑙 � 𝑟𝑟2𝑆𝑆

4𝑇𝑇(𝑡𝑡−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜)
�� 

 
Collecting terms: 
 

 𝑠𝑠 = 𝑄𝑄
4𝜋𝜋𝜋𝜋

�− 𝑙𝑙𝑙𝑙 �𝑟𝑟
2𝑆𝑆
4𝑇𝑇𝑇𝑇
�+ 𝑙𝑙𝑙𝑙 � 𝑟𝑟2𝑆𝑆

4𝑇𝑇(𝑡𝑡−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜)
�� 

 
Using the properties of the log function, this can be written as: 
 

 𝑠𝑠 = 𝑄𝑄
4𝜋𝜋𝜋𝜋

𝑙𝑙𝑙𝑙 �
� 𝑟𝑟2𝑆𝑆
4𝑇𝑇(𝑡𝑡−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜)�

�𝑟𝑟
2𝑆𝑆
4𝑇𝑇𝑇𝑇�

� = 𝑄𝑄
4𝜋𝜋𝜋𝜋

𝑙𝑙𝑙𝑙 � 𝑡𝑡
𝑡𝑡−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

� 

  = 2.303
𝑄𝑄

4𝜋𝜋𝜋𝜋
𝑙𝑙𝑙𝑙𝑙𝑙10 �

𝑡𝑡
𝑡𝑡 − 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

� 

 
This result implies that the late-time recovery depends only on the transmissivity, and not 
the storage coefficient. 
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Straight-line analysis 
 
Let us consider two points along the plot of drawdown vs. t/t-toff: 
 

 
 
From the Cooper-Jacob solution we have: 
 

 𝑠𝑠1 − 𝑠𝑠2 = 𝑄𝑄
4𝜋𝜋𝜋𝜋

2.303 ��𝑙𝑙𝑙𝑙𝑙𝑙10 ��
𝑡𝑡1

𝑡𝑡1−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜
�� −� 𝑙𝑙𝑙𝑙𝑙𝑙10 ��

𝑡𝑡2
𝑡𝑡2−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

��� 

 
Solving for the transmissivity yields: 
 

 𝑇𝑇 = 2.303 𝑄𝑄
4𝜋𝜋

1
(𝑠𝑠1−𝑠𝑠2)

𝑙𝑙𝑙𝑙𝑙𝑙10 �
� 𝑡𝑡1
𝑡𝑡1−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

�

� 𝑡𝑡2
𝑡𝑡2−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

�
� 

 

If � 𝑡𝑡1
𝑡𝑡1−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

� and � 𝑡𝑡2
𝑡𝑡2−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

� differ by a factor of ten (one log cycle), we denote s1-s2 as 

∆s and the Cooper-Jacob straight-line analysis reduces to: 
 
 𝑇𝑇 = 2.303 𝑄𝑄

4𝜋𝜋
1
𝛥𝛥𝛥𝛥
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Example 3 
 
Let us consider an ideal confined aquifer that is pumped by a fully penetrating well. As 
shown in Figure 11, the results calculated with the Theis and Cooper-Jacob solutions are 
indistinguishable except at the beginning and end of pumping. 
 

 
 

Figure 11. Theis solution and Cooper-Jacob approximation for Exmple 3 
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Let us re-plot the recovery portion of the data, with an alternate time axis, � 𝑡𝑡
𝑡𝑡−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

�. With 

this revised time axis, the end of pumping corresponds to a relatively large number and 
the recovery progress leftwards in Figure 12. As recovery continues, the drawdowns 
calculated with the Cooper-Jacob approximation converge with the Theis solution. It is 
important to note that the theoretical drawdowns extrapolate back to zero, in the limit as 
t/(t-toff) → 1. If they do not, there is probably a temporal trend in the water level data that 
should be extracted prior to further analysis. This may also be diagnostic of the influence 
of a hydrologic boundary. 
 

 
 

Figure 12. Theis solution and Cooper-Jacob solutions, semilog recovery plot 
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5. Diagnosis of aquifer structure from recovery data, Example 4 
 
Recovery data are particularly useful for diagnosing boundary effects. These boundary 
effects may not be detectible in the drawdown portion of the test, but their manifestation 
in the recovery data may provide valuable insights into the structure of an aquifer. 
 
We will consider the simple conceptual model shown in Figure 13 to illustrate the 
potential utility of recovery data for diagnosing complexities in aquifer structure. We 
consider a confined circular aquifer that is homogeneous and isotropic. We depart from 
the ideal Theis model in considering an aquifer that has a finite extent. Three cases will 
be considered: 
 
1. Radially infinite aquifer (Theis); 
2. Radially bounded aquifer, Constant-head at R = 1000 m (Theis-CH); and 
3. Radially bounded aquifer, No-flow at R = 1000 m (Theis-NF). 
 
 

 
 
 

Figure 13. Conceptual model for an aquifer of finite radial extent 
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For the example calculations, a transmissivity and storativity of 6.944×10-2 m2/min and 
1.0×10-4 are assumed. The pumping rate is 1.0 m3/min and the well is pumped for 
120 minutes. Drawdowns are calculated at an observation well located at r = 10.0 m. As 
shown in Figure 14, the drawdowns calculated for all three cases are essentially the same. 
If we did not know that the aquifer was bounded, we would not be able to detect it from a 
pumping test of this duration. 
 

 
 

 Figure 14. Calculated drawdowns during the pumping period 
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Calculated drawdowns versus time for the complete pumping and recovery period are 
plotted for the three cases in Figure 15. Although the drawdowns during the pumping 
period are nearly identical, there are systematic differences in the drawdowns during the 
recovery period. If we were fitting the complete drawdown record with the Theis solution 
for an infinite aquifer, we would notice that we could match the data from the pumping 
period but not the data from the recovery period. For a constant-head boundary 
(Theis-CH), the aquifer recovers too quickly. For a no-flow boundary (Theis-NF), the 
aquifer never recovers completely. 
 

 
 

 Figure 15. Calculated drawdowns during pumping and recovery 
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The recoveries calculated for the three cases are shown on Cooper-Jacob semilog plot in 
Figure 16. The results are highly diagnostic. The long-term recoveries for the bounded 
aquifers do not approach zero drawdown as t/t-toff approaches 1.0. In the case of the 
aquifer surrounded by a surface of zero-drawdown (constant-head), the aquifer recovers 
completely before t/(t-toff) approaches a value of 1.0. In the case of the aquifer surrounded 
by an impermeable boundary (no-flow), the aquifer never fully recovers. 
 

 
 

Figure 16. Semilog recovery plot 
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6. The van der Kamp (1989) method to extend the effective duration of pumping 
 
van der Kamp (1989) introduced a different approach for working with recovery data. 
Although his approach is founded on classical superposition theory, it nevertheless 
represents a very useful extension of existing methods. van der Kamp’s method appears 
to have been overlooked. As far as we are aware, it has not been implemented in any of 
the widely used interpretation packages. In our opinion this is an important oversight, and 
this section of the notes has been prepared in part to renew interest in this approach. 
 
6.1 Theory of the van der Kamp method 
 
For a general linear conceptual model, the drawdown s(r,t) caused by pumping at a 
variable rate Q(t) can be written as: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) = � 𝑄𝑄(𝜏𝜏)
𝑡𝑡

0
 𝐺𝐺(𝑟𝑟, 𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑 

 
This general relation is referred to as a convolution integral; the term G(r,t) represents the 
drawdown at a distance r caused by pumping for an instant at time t = 0, and is referred to 
frequently as the Green’s function for a particular problem. 
 
Let us consider an arbitrary pumping history represented by a set of discrete steps 
(Figure 17). 
 

 
 

Figure 17. Discrete representation of an arbitrary pumping history 
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The pumping history for a discrete set of steps can be written as: 
 

𝑄𝑄(𝑡𝑡) = � 𝛥𝛥𝑄𝑄𝑖𝑖𝐻𝐻(𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑖𝑖) 
𝑁𝑁𝑁𝑁(𝑡𝑡)

𝑖𝑖=1

 

 
Here H is the Heaviside step function, which is defined as: 
 

𝐻𝐻(𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑖𝑖)  = 0 𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑡𝑡𝑠𝑠𝑖𝑖 
         = 1 𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑡𝑡𝑠𝑠𝑖𝑖 

 
The term tsi designates the time at which the ith change in the pumping rate occurs. At 
that time the pumping rate changes by an increment ∆Qi. The term NP(t) designates the 
number of steps that have occurred up to any time t. 
 
Substituting for the pumping history in the convolution integral yields: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) = � � � ∆𝑄𝑄𝑖𝑖 𝐻𝐻(𝜏𝜏 − 𝑡𝑡𝑠𝑠𝑖𝑖)
𝑁𝑁𝑁𝑁(𝜏𝜏)

𝑖𝑖=1

�
𝑡𝑡

0
 𝐺𝐺(𝑟𝑟, 𝑡𝑡 − 𝜏𝜏) 𝑑𝑑𝑑𝑑 

 
Reversing the order of the summation and integration and using the properties of the 
Heaviside step function yields: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) = � ∆𝑄𝑄𝑖𝑖 

𝑁𝑁𝑁𝑁(𝑡𝑡)

𝑖𝑖=1

� 𝐺𝐺(𝑟𝑟, 𝑡𝑡)
𝑡𝑡−𝑡𝑡𝑠𝑠𝑖𝑖

0
  𝑑𝑑𝑑𝑑 

 
Expanding this relation yields: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) = 𝑄𝑄1� 𝐺𝐺(𝑟𝑟, 𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

0
+ (𝑄𝑄2 − 𝑄𝑄1)� 𝐺𝐺(𝑟𝑟, 𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡−𝑡𝑡𝑠𝑠2

0
+⋅⋅

⋅ +(𝑄𝑄𝑁𝑁𝑁𝑁 − 𝑄𝑄𝑁𝑁𝑁𝑁−1)� 𝐺𝐺(𝑟𝑟, 𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡−𝑡𝑡𝑠𝑠𝑁𝑁𝑁𝑁

0
 

 
Let us designate: 
 
 𝑠𝑠1(𝑟𝑟, 𝑡𝑡) = 𝑄𝑄1 ∫ 𝐺𝐺(𝑟𝑟, 𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡

0  
 
The term s1 represents the drawdown that would be observed at time t if the pumping rate 
had remained constant at a rate Q1. 
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When we substitute for s1, the expanded relation for the drawdown becomes: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) = 𝑠𝑠1(𝑟𝑟, 𝑡𝑡) + (𝑄𝑄2 − 𝑄𝑄1)� 𝐺𝐺(𝑟𝑟, 𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡−𝑡𝑡𝑠𝑠2

0
+⋅⋅

⋅ +(𝑄𝑄𝑁𝑁𝑁𝑁 − 𝑄𝑄𝑁𝑁𝑁𝑁−1)� 𝐺𝐺(𝑟𝑟, 𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡−𝑡𝑡𝑠𝑠𝑁𝑁𝑁𝑁

0
 

 
Making use of the definition of s1, we can write this as: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) = 𝑠𝑠1(𝑟𝑟, 𝑡𝑡) +
(𝑄𝑄2 − 𝑄𝑄1)

𝑄𝑄1
𝑠𝑠1(𝑟𝑟, 𝑡𝑡 − 𝑡𝑡𝑠𝑠2) +⋅⋅⋅ +

(𝑄𝑄𝑁𝑁𝑁𝑁 − 𝑄𝑄𝑁𝑁𝑁𝑁−1)
𝑄𝑄1

𝑠𝑠1(𝑟𝑟, 𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑁𝑁𝑁𝑁) 

 
Rearranging to solve for s1 yields: 
 

𝑠𝑠1(𝑟𝑟, 𝑡𝑡) = 𝑠𝑠(𝑟𝑟, 𝑡𝑡) − �
(𝑄𝑄2 − 𝑄𝑄1)

𝑄𝑄1
𝑠𝑠1(𝑟𝑟, 𝑡𝑡 − 𝑡𝑡𝑠𝑠2) +⋅⋅⋅ +

(𝑄𝑄𝑁𝑁𝑁𝑁 − 𝑄𝑄𝑁𝑁𝑁𝑁−1)
𝑄𝑄1

𝑠𝑠1(𝑟𝑟, 𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑁𝑁𝑁𝑁)� 

 
This is the general form of the van der Kamp (1989) algorithm for determining the 
equivalent drawdown that would be observed at any time if the pumping rate were 
constant at a rate Q1. 
 
6.2 Application of the van der Kamp method for pumping at a constant rate 
followed by recovery 
 
Although the general form of the van der Kamp (1989) algorithm appears to be relatively 
complicated, it has a straightforward interpretation for the analysis of recovery following 
pumping a constant rate. For this case, during the recovery period we have NP = 2, 
ts2 = toff, and Q2 = 0, and van der Kamp’s general form reduces to: 
 

𝑠𝑠1(𝑟𝑟, 𝑡𝑡) = 𝑠𝑠(𝑟𝑟, 𝑡𝑡) + 𝑠𝑠1�𝑟𝑟, 𝑡𝑡 − 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜� 
 
This final result has a straightforward interpretation. If pumping had continued at a 
constant rate Q1, the drawdown that would have been observed at any elapsed time, 
denoted s1, would be equal to the actual drawdown plus the drawdown observed at time 
t-toff. 
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Example 
 
The van der Kamp approach is illustrated with an example calculation. We will consider 
a pumping well that penetrates the full thickness of an ideal confined aquifer. The 
assumed parameter values are listed below: 
 

• Transmissivity, T = 1.0×10-4 m2/sec; 
• Storativity, S = 1.0×10-4; 
• Pumping rate, Q = 1.7×10-3 m3/sec; 
• Duration of pumping, toff = 250 seconds; and 
• Radial distance, r = 10 m. 

 
The calculated drawdown history is plotted in Figure 18. 
 

 
 

 Figure 18. Calculated drawdowns during pumping and recovery 
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Let us estimate what the drawdowns would have been if the pumping had continued at a 
constant rate of 1.7×10-3 m3/sec. To demonstrate the van der Kamp method, a hand 
calculation is made at t = 400 seconds. 
 
Let us recall the general formula: 
 

𝑠𝑠1(𝑟𝑟, 𝑡𝑡) = 𝑠𝑠(𝑟𝑟, 𝑡𝑡) + 𝑠𝑠1�𝑟𝑟, 𝑡𝑡 − 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜� 
 
The pumping lasted 250 seconds; therefore, the equivalent constant-rate drawdown at 
t = 400 seconds is given by: 
 
 𝑠𝑠1(𝑡𝑡 = 400 𝑠𝑠) = 𝑠𝑠(𝑡𝑡 = 400 𝑠𝑠) + 𝑠𝑠1�𝑡𝑡 − 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 = 400 𝑠𝑠 − 250 𝑠𝑠 = 150 𝑠𝑠� 
 
From Figure 13, we observe from Figure 17 that the drawdown at 400 seconds is 1.33 m. 
 
At t = 150 s, the well is still pumping; therefore s1 = s and we can again estimate the 
drawdown directly from Figure 17. The drawdown after 150 seconds is 15.98 m: 
 
The equivalent drawdown is therefore given by: 
 
 𝑠𝑠1(𝑡𝑡 = 400 𝑠𝑠) = 1.33 m + 15.98 m = 17.31 m 
 
This calculation is shown graphically in Figure 19. The red line is simply the pumping 
portion of the data, flipped in sign and shifted by the duration of pumping. 
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 Figure 19. Calculation of equivalent constant-rate drawdown at 400 seconds 
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The results of applying the van der Kamp method for the entire drawdown record are 
shown in Figure 20. The drawdowns calculated with the Theis (1935) solution for 
continuous pumping at a constant rate of 1.7×10-3 m3/sec are also plotted in Figure 20. 
The results obtained with the van der Kamp method match exactly the results obtained 
with the Theis solution. 
 
 

 
 

 Figure 20. Actual drawdown and equivalent constant-rate drawdown 
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7. Case study: Estevan, Saskatchewan 
 
In this case study, the van der Kamp (1989) method is applied to extend the effective 
duration of pumping of a pumping test conducted in a confined buried-channel aquifer 
near Estevan, Saskatchewan. The aquifer is described in Walton (1970), van der Kamp 
and Maathuis (2002), and Maathuis and van der Kamp (2003). Several pumping tests 
have been conducted in the aquifer; the data considered in this case study were obtained 
during a test conducted in 1984 and reported in van der Kamp (1985; 1989). 
 
Pumping test data 
 
• The aquifer was pumped at a constant rate for 41,520 minutes (about 29 days). 
 
• Water levels following the end of pumping were monitored for an additional 

249,000 minutes (173 days). 
 
Drawdowns at observation well 11L-84 during the pumping and recovery periods are 
shown in Figure 21. For subsequent analysis, the original observations are supplemented 
with interpolated values indicated by the crosses. The interpolated values are taken from 
van der Kamp (1989; Table 2) and are smoothed slightly with respect to the original 
observations. 
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Figure 21. Raw drawdown data with interpolated values 

0 50000 100000 150000 200000 250000 300000
Time (minutes)

0

1

2

3

4

5
D

ra
w

do
w

n 
(m

)
Observations
Interpolated values



 
  Page 31 of 40 

 
P:\0996-XX_GAC-MAC\Notes\05_Significance and interpretation of recovery data\05_02_Significance and interpretation of recovery 
data_Notes.docx 

Application of the van der Kamp (1989) method 
 
For pumping at a constant rate followed by recovery, the drawdown that would be 
observed if the pumping had continued through the recovery period, s1(r,t), is calculated 
as: 
 

𝑠𝑠1(𝑟𝑟, 𝑡𝑡) = 𝑠𝑠(𝑟𝑟, 𝑡𝑡) + 𝑠𝑠1�𝑟𝑟, 𝑡𝑡 − 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜� 
 
Here s(r,t) is the actual observed drawdown at elapsed time t, and toff is the duration of 
pumping (t-toff is the elapsed time since the end of pumping). 
 
Extended drawdowns at three times beyond the end of pumping will be calculated. Recall 
that the well was pumped for 41,520 minutes. 
 
t = 51,900 minutes 
 
• Actual drawdown at t = 51,900 minutes: 3.65 m 
• Elapsed time since the end of pumping: 51,900 – 41,520 = 10,380 minutes 
• Constant-rate drawdown at t-toff = 10,380 minutes: 1.75 m 
 
The equivalent constant-rate drawdown is therefore: 
 

𝑠𝑠1(𝑟𝑟, 𝑡𝑡) = 3.65 + 1.75 = 5.40 𝑚𝑚 
 
The results of the calculation are shown on Table 1. Using the recovery data from 
10,380 minutes after the end of pumping, the effective duration of pumping is increased 
to 51,900 minutes. 
 

Table 1. Extended results for t = 51,000 minutes 
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t = 83,040 minutes 
 
• Actual drawdown at t = 83,040 minutes: 2.26 m 
• Elapsed time since end of pumping: 83,040 – 41,520 = 41,520 minutes 
• Constant-rate drawdown at t-toff = 41,520 minutes: 4.70 m 
 

𝑠𝑠1(𝑟𝑟, 𝑡𝑡) = 2.26 m + 4.70 m = 6.96 m 
 
Complete results up to 83,040 minutes are assembled on Table 2. 
 

Table 2. Extended results to t = 83,040 minutes 
 

t s (t) t-toff s (t-toff) s1
(minutes) (m) (minutes) (m) (m)

0 0.00 0.00
10380 1.75 1.75
20760 3.02 3.02
31140 4.00 4.00
41520 4.70 0 4.70
51900 3.65 10380 1.75 5.40
62280 3.07 20760 3.02 6.09
72660 2.60 31140 4.00 6.60
83040 2.26 41520 4.70 6.96  
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t = 124,560 minutes 
 
• Actual drawdown at t = 124,560 minutes: 1.52 m 
• Elapsed time since end of pumping: 124,560 – 41,520 = 83,040 minutes 
 
A total elapsed time of 124,560 minutes corresponds to 83,040 minutes after pumping 
stopped, which is longer than the duration of pumping. Beyond an elapsed time of 2toff, 
we start to make use of the results for s1 that have been assembled already. The 
calculations can be continued as long as there are measurable drawdowns. 
 
• Constant-rate drawdown at t-toff = 83,040 minutes: 6.96 m 
 

𝑠𝑠1(𝑟𝑟, 𝑡𝑡) = 1.52 m + 6.96 m = 8.48 m 
 
Complete results for all of the available drawdown data are assembled on Table 3 and are 
plotted in Figure 22. 
 

Table 3. Results of equivalent constant-rate drawdown calculations 
 

t s (t) t-toff s (t-toff) s1
(minutes) (m) (minutes) (m) (m)

0 0.00 0.00
10380 1.75 1.75
20760 3.02 3.02
31140 4.00 4.00
41520 4.70 0 4.70
51900 3.65 10380 1.75 5.40
62280 3.07 20760 3.02 6.09
72660 2.60 31140 4.00 6.60
83040 2.26 41520 4.70 6.96  

124560 1.52 83040 6.96 8.48
166080 1.18 124560 8.48 9.66
207600 0.95 166080 9.66 10.61
249120 0.76 207600 10.61 11.37
290640 0.68 249120 11.37 12.05  
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Figure 22. Complete record of equivalent constant-rate drawdowns 
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In the Estevan case study, the use of recovery data with the van der Kamp method 
extends the effective duration of pumping from one month to more than six months. The 
drawdown observed at the end of pumping is 4.70 m. The equivalent constant-rate 
drawdown for the last recorded water level is 12.05 m. The implications of this extension 
are best illustrated by plotting the raw drawdowns and the equivalent constant-rate 
drawdowns against the logarithm of time, as shown in Figure 23. We see that even after 
29 days of pumping, it is possible to only identify the beginning of the long-term trend of 
the drawdown. In contrast, the accelerating trend that is characteristic of a buried-channel 
aquifer is clearly evident in the equivalent constant-rate drawdowns. 
 

 
 

Figure 23. Semilog plot of equivalent constant-rate drawdowns 
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8. Application of the van der Kamp method for the bounded circular aquifer 
example 

 
The utility of the van der Kamp method is further demonstrated by revisiting the example 
of the bounded circular aquifer. The complete drawdown histories from Figure 15 are 
reproduced below. 
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The equivalent drawdowns for extended pumping for the three cases are plotted in 
Figure 24. As discussed previously, it is not possible to detect the presence of the aquifer 
boundary with only the data from the pumping portion of the test, up to an elapsed time 
of 120 minutes. However, the boundary effects are clearly evident when the van der 
Kamp method is used to extend the effective duration of pumping. For the case of a 
zero-drawdown outer boundary (CH, constant-head), there is a distinct flattening of the 
drawdown beyond 120 minutes. In contrast, for the case of an impermeable boundary 
(NF, no-flow), the drawdowns accelerate beyond 120 minutes. 
 

 
 

Figure 24. Equivalent constant-rate drawdowns 
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As shown in Figure 25, when the drawdowns for the extended duration of pumping are 
assembled on a semilog plot, the boundary effects manifest themselves as a deviation 
from the straight-line response. 
 

 
 

Figure 25. Equivalent constant-rate drawdowns, semilog plot 
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7. Summary of key points 
 
1. Recovery data may be some of the best aquifer testing data available. 
 
2. Recovery data are straightforward to interpret using superposition. 
 
3. The Cooper-Jacob semilog plot of recovery data has useful diagnostic features. 
 
4. The van der Kamp (1989) method of adjusting recovery data is a simple and 

illuminating technique for creating equivalent constant-rate pumping test data.  The 
method can be used to effectively extend the duration of pumping. 

 
5. Recovery data may offer insights into aquifer behavior not available from drawdown 

data. 
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A GENERAL METHOD FOR USING RECOVERY 
DATA FOR PUMPING TESTS IN COMPLEX 
HYDROGEOLOGICAL SETTINGS  
 
Christopher J. Neville 
S.S. Papadopulos & Associates, Inc., Waterloo, Ontario 
Garth van der Kamp 
Environment Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan 
 
 
ABSTRACT 
Collection of water-level recovery data is a common practice for pumping tests. The resulting data can provide some of 
the most useful information from the tests, but are rarely used to their full value. van der Kamp (1989) proposed a 
general method for the interpretation of recovery data that is easy to use and applicable for simple or complex 
hydrogeology, depending only on the principle of superposition. No other assumptions about the properties and 
geometry of the formations are required. The method can greatly increase the value of pumping tests by extending their 
effective duration for as long as significant residual drawdowns can be measured. 
 
RÉSUMÉ 
La collection de données de rétablissement de niveau d'eau est une pratique commune pour des essais de pompage. 
Les données en résultant peuvent fournir une grande partie des informations les plus utiles des essais, mais sont 
rarement employées à leur pleine valeur. van der Kamp (1989) a proposé une méthode générale pour l'interprétation des 
données de rétablissement qui est facile à utiliser et qui est applicable pour hydrogéologie simple ou complexe, 
dépendant seulement du principe de la superposition. Aucune autre assomption au sujet des propriétés et géométrie des 
formations sont exigées. La méthode peut considérablement augmenter la valeur des essais de pompages en 
prolongeant la durée efficace des essais, aussi long que des abaissements résiduels significatifs peuvent être mesurés. 
 
 
 
1        INTRODUCTION 
 
Guidance documents for conducting pumping tests 
typically require that water levels be monitored for a 
specified time following the end of pumping. In our 
experience, frequently nothing is done with the recovery 
data after they have been collected, plotted, and included 
in the appendix to a report. In most cases, the cursory 
treatment of recovery data represents a genuine loss. 
Recovery data frequently provide some of the most 
reliable information from pumping tests. 
 
The traditional approach to interpreting recovery data has 
involved the application of the Theis model of aquifer 
response with the Cooper-Jacob approximation of the 
Theis well function (Cooper and Jacob, 1946). It assumes 
an ideal, confined aquifer of infinite extent, which is rarely 
encountered in practice, even approximately. The Cooper-
Jacob straight-line analysis has a particularly simple 
implementation for recovery analysis: 
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   [1] 

 
 
 
 
 

In Equation [1], s is the drawdown, Q is the pumping rate 
(assumed constant during pumping), T is the 
transmissivity, t is the elapsed time since the start of 
pumping, and toff is the duration of pumping. Equation [1] 
can be used directly to estimate the transmissivity from 
the slope of the semi-log plot. Apart from the assumption 
of an ideal confined aquifer, this approach essentially 
breaks the pumping test up into two independently 
analyzed portions, the pumping period and the recovery 
period. These may or may not give comparable results for 
the transmissivity of the aquifer, depending on how well 
the assumption of an ideal aquifer is met, even though 
they apply to the same well-aquifer system. 
 
van der Kamp (1989) introduced a different approach for 
working with recovery data. The approach is based only 
on the principle of superposition and does not require 
other assumptions about the hydraulic properties and 
geometry of the aquifer and adjacent formations. The 
approach provides a straightforward and useful extension 
of existing methods. It allows consideration of the 
pumping and recovery periods together, essentially 
extending the effective duration of the pumping test to as 
long as measurable drawdown persists. Our experience 
suggests that van der Kamp’s approach has been largely 
overlooked. As far as we are aware, it has not been 
implemented in any of the widely used interpretation 
packages. This is an important oversight and this note has 
been prepared in part to renew interest in this approach. 
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2        DEVELOPMENT OF THE GENERAL THEORY 
 
For a general linear conceptual model, the drawdown 
s(r,t) caused by pumping at a variable rate Q(t) can be 
written as: 
 
 

( ) ( ) ( )
0

, ,
t

s r t Q G r t dτ τ τ= −∫   [2] 

 
 
Equation [2] is a general statement of the principle of 
superposition, and is referred to as a convolution integral. 
The term G(r,t) represents the drawdown at a distance r 
caused by pumping for an instant at time t = 0, and is 
frequently referred to as the Green’s function for a 
particular problem. van der Kamp’s method considers an 
arbitrary pumping history represented by a set of discrete 
steps, as shown in Figure 1. 
 

 
 
Figure 1. Discrete representation of an arbitrary pumping 

history 
 
The equivalent constant-rate drawdown, s1, is defined as 
the drawdown that would be observed at time t if the 
pumping rate had remained constant at a rate Q1. For an 
arbitrary step pumping history, it follows from Equation [2] 
that the equivalent constant-rate drawdown is given by: 
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       [3] 
 
In principle it is possible to reduce the drawdown data 
from any pumping test with varying pumping rates to the 
equivalent drawdown that would have been observed if 
the pumping rate had remained constant. This general 
principle depends only on the principle of superposition, 
and assumes only mathematical “linearity” of the 
equations that govern the flow. Linearity in turn means 
that the hydraulic properties of the formations do not 
change and that the boundary conditions remain constant 
(e.g., no dewatering of the formations). 

3       APPLICATION FOR PUMPING AT A CONSTANT 
RATE FOLLOWED BY RECOVERY 
 
Although the general form of the van der Kamp (1989) 
algorithm appears to be relatively complicated, it is 
particularly simple for the analysis of recovery following 
pumping at a constant rate. This is by far the most 
common pumping test practice. For this case, during the 
recovery period NP = 2, ts2 = toff, and Q2 = 0, and van der 
Kamp’s general form reduces to: 
 
 

( ) ( ) ( )1 1, , , offs r t s r t s r t t= + −   [4] 

 
 
This result can be interpreted directly: if pumping had 
continued, the drawdown at any time t would be equal to 
the actual drawdown at time t plus the drawdown 
observed at time t-toff. Note that Equation [4] is not just 
limited to a recovery period that has the same duration as 
pumping. It can be applied for as long as the measured 
drawdown s(r,t) is significant compared to the possible 
errors of measurement and uncertainties in what the 
water level would have been in the absence of pumping. 
 
To illustrate the method, an idealized case of a well that 
penetrates the full thickness of an ideal confined aquifer is 
considered. The following parameter values are assumed: 
transmissivity, T = 10-4 m2/sec; storativity, S = 10-4; 
pumping rate, Q = 1.7×10-3 m3/sec; duration of pumping, 
toff = 250 seconds; and radial distance, r = 10 m. 
 
The calculated drawdown history is plotted in Figure 2. 
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Figure 2. Calculated drawdown during pumping and 

recovery 
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To demonstrate the van der Kamp approach, the 
drawdown that would have been observed after 
400 seconds if pumping had continued at a constant rate 
is calculated. The equivalent constant-rate drawdown at 
t = 400 seconds is given by: 
 
 

( ) ( ) ( )1 1400 s 400 s 150 soffs t s t s t t= = = + − =  [5] 

 
 
At t = 400 seconds, the observed drawdown plotted in 
Figure 2 is 1.33 m. At t = 150 seconds, the well is still 
pumping; therefore s1 = s and the drawdown estimated 
from Figure 2 is s1(t = 150 s) = 15.98 m. The equivalent 
drawdown is therefore: 
 
 

( )1 400 s 1.33 m 15.98 m 17.31 ms t = = + =   [6] 

 
 
The calculation is illustrated in Figure 3. 
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Figure 3. Calculation of equivalent constant-rate 
drawdown at 400 seconds 
 
 
 
 
 
 
 
 
 
 

The results of applying the van der Kamp method for all of 
the results of the example are plotted in Figure 4. 
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Figure 4. Actual drawdown and equivalent constant-rate 

drawdown 
 
 
A simple but widely applicable illustration of the potential 
utility of the method can be drawn from the above 
example. Consider a pumping test with recovery data 
taken for the same time after pumping as the duration of 
pumping. The standard 24-hour test with 24 hours of 
recovery is a case in point. The residual drawdown after 
24 hours of recovery is equal to the additional drawdown 
that would have occurred between 24 and 48 hours if 
pumping had continued. The one data point obtained after 
24 hours of recovery already doubles the effective length 
of the pumping test, especially if further analysis is based 
on methods making use of semi-log or log-log plots of 
drawdown versus time. Numerous “24-24” pumping test 
analyses could make good use of this simplest of 
calculations. Other data points can also be calculated, as 
illustrated in Figures 3 and 4. 
 
An additional advantage of making full use of the recovery 
data is that “noise” introduced into the drawdown data by 
irregularities of the pumping rate is much reduced during 
the recovery phase. 
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4       CASE STUDY 
 
The utility of the van der Kamp approach is demonstrated 
by using the recovery data to extend the effective duration 
of a pumping test conducted in a confined buried-channel 
aquifer near Estevan, Saskatchewan. The test was 
conducted in 1984 and was reported in van der 
Kamp (1985; 1989). The aquifer is described in Walton 
(1970), van der Kamp and Maathuis (2002), and Maathuis 
and van der Kamp (2003). This is a complex semi-
confined channel aquifer, involving complicating factors 
such as several intersecting channels, partial blockages, 
lateral inflow from surrounding formations and unknown 
regional permeability of the overlying glacial till aquitard. 
No simple analytical aquifer model could be expected to 
apply and the numerical model that was developed was 
highly unconstrained. 
 
The aquifer was pumped at a constant rate for 
41,520 minutes (about 29 days), and water levels 
following the end of pumping were monitored for an 
additional 249,000 minutes (173 days). Drawdowns at 
observation well 11L-84 during the pumping and recovery 
periods are shown in Figure 5 (data from Figure 3 of van 
der Kamp, 1989). For subsequent analysis, the original 
observations are supplemented with interpolated values 
indicated by the crosses.  The interpolated drawdown 
observations, taken from van der Kamp (1989; Table 2), 
are smoothed slightly with respect to the original 
observations. 
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Figure 5. Raw drawdown data 
 
 
 
 
 
 

Complete results obtained from applying van der Kamp’s 
method are shown in Figure 6. 
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Figure 6. Equivalent constant-rate drawdowns 
 
 
In this example, the use of recovery data lengthens the 
useful duration of the pumping test from one month to 
more than six months. The implications of this extension 
are best illustrated by plotting the raw drawdowns and the 
equivalent constant-rate drawdowns against the logarithm 
of time, as shown in Figure 7. 
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Figure 7. Semi-log plot raw and equivalent drawdown data 
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As shown in Figure 7, even after 29 days of pumping it is 
only possible to identify the beginning of the long-term 
trend of the drawdown. In contrast, the accelerating trend 
that is characteristic of a buried-channel aquifer is clearly 
evident in the equivalent constant-rate drawdowns. The 
drawdown at the end of pumping is 4.70 m. The 
equivalent constant-rate drawdown for the last recorded 
water level is 12.05 m. 
 
The application of the van der Kamp analysis in this 
example is possible because significant drawdowns 
persisted more than six months beyond the end of 
pumping. The persistent drawdown reflects the conditions 
of the aquifer: the buried-channel aquifer is overlain by a 
thick aquitard of low conductivity, which allows only 
minimal recharge to the aquifer. 
 
Subsequently the aquifer was pumped at a high rate for 6 
years to supply cooling water for a coal-fired power plant 
(Maathuis and van der Kamp, 2003). The long-term 
drawdown due to such pumping was predicted on the 
basis of the 6 months of extrapolated drawdown illustrated 
in Figure 7, and the actual measured drawdown agreed 
closely with the prediction. 
 
 
6       DISCUSSION 
 
Robust and inexpensive pressure transducers have 
become widely available in recent years. These can be 
left securely in observation wells without requiring the 
continuous on-site presence of field staff. The collection of 
extended recovery data has therefore become easier and 
more economical. It may become standard practice to 
record water level data after the cessation of pumping for 
as long as it takes to attain full recovery. Such long-term 
monitoring of recovery has the additional advantage that it 
may allow a more robust estimate of changes of the 
“static” water level during the pumping and recovery 
period. 
 
The authors’ experience with pumping tests suggests that 
the general method for the analysis of recovery data 
described in van der Kamp (1989) could have enhanced 
the value of almost every pumping test that they have 
encountered, with only minor additional effort in data 
analysis. Full recognition and exploitation of the potential 
value of recovery data is therefore recommended to all 
practitioners. 
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Methods Note/

Using Recovery Data to Extend the Effective
Duration of Pumping Tests
by Christopher J. Neville1 and Garth van der Kamp2

Abstract
Collection of water-level recovery data is a common practice for pumping tests. The resulting data can

provide some of the most useful information from the tests, but are rarely used to their full value. van der Kamp
(1989) proposed a general method that uses recovery data to extend the effective duration of pumping. The
method is straightforward to implement and applicable for simple or complex hydrogeologic settings. The only
assumption invoked is that the response remains linear such that the principle of superposition can be applied. No
other assumptions about the properties of the aquifer are required. The method can greatly increase the value of
pumping tests by extending the effective duration of the tests for as long as significant residual drawdowns are
observed.

Introduction
Guidance documents for conducting pumping tests

typically require that water levels be monitored for a
specified time following the end of pumping. In our expe-
rience, frequently nothing is done with the recovery data
after they have been collected, plotted, and included in the
appendix to a report. In most cases, the cursory treatment
of recovery data represents a genuine loss. Recovery data
frequently provide some of the most valuable information
from pumping tests.

The traditional approach to interpreting recovery data
has involved the application of the Theis model of aquifer
response with the Cooper-Jacob approximation of the
Theis well function (Theis 1935; Cooper and Jacob 1946).
The aquifer is assumed to be confined, homogeneous
and isotropic and of infinite extent. This approach essen-
tially breaks the pumping test up into two independently
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analyzed portions, the pumping period and the recov-
ery period. The separate analyses may or may not give
comparable results for the transmissivity of the aquifer,
depending on how well the assumption of an ideal aquifer
is met, even though they are applied to the same well-
aquifer system.

van der Kamp (1989) introduced a different approach
for working with recovery data, which makes use of
the principle of superposition and does not require other
assumptions about the hydraulic properties and geome-
try of the aquifer and adjacent formations. The approach
provides a straightforward and useful extension of exist-
ing methods. It allows consideration of the pumping and
recovery periods together, extending the effective duration
of the pumping test to as long as measurable drawdown
persists. Our experience suggests that van der Kamp’s
approach has been largely overlooked. As far as we are
aware it has not been implemented in any of the widely
used interpretation packages. In our opinion this is an
important oversight, and this note has been prepared to
renew interest in this approach.

Method and Application
van der Kamp (1989) defined an equivalent constant-

rate drawdown, s1, as the drawdown that would be
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observed at time t if the pumping rate had remained
constant at its initial rate Q1. van der Kamp’s method
considers an arbitrary pumping history represented by a
set of discrete steps. For the case of pumping at a constant
rate followed by recovery, van der Kamp’s general form
reduces to

s1(xi, t) = s(xi, t) + s1(xi, t − toff) (1)

where s(xi , t) is the observed drawdown at the observa-
tion well, xi are the coordinates of the observation well,
t the total elapsed time since the start of pumping, and toff

the duration of pumping. This result has a direct physical
interpretation: if pumping had continued, the drawdown
at any time t would be equal to the drawdown observed
at time t plus the drawdown observed at time t − toff.
Equation 1 is not limited to a recovery period equal to
the duration of pumping, but can be applied for as long
as the observed drawdown s(r ,t) is significant compared
to the possible errors of measurement and uncertainties in
what the water level would have been in the absence of
pumping.

The application and utility of van der Kamp’s
approach is demonstrated by making use of the recovery
data from a pumping test conducted in a confined buried-
channel aquifer near Estevan, Saskatchewan. This is a
complex semi-confined channel aquifer, involving compli-
cating factors such as several intersecting channels, partial
blockages, lateral inflow from surrounding formations and
an unknown regional permeability of the overlying glacial
till aquitard (Walton 1970; van der Kamp and Maathuis
2011). The test was conducted in 1984 and was reported
in van der Kamp (1985, 1989). The aquifer was pumped
at a constant rate of 0.076 m3/s for 41,520 min (about
29 d), and water levels were monitored for an addi-
tional 249,000 min (173 d). Drawdowns at observation
well 11L-84 during the pumping and recovery periods are
shown in Figure 1. The original observations are supple-
mented with smoothed interpolated values indicated by the
crosses (values are taken from Table 2 of van der Kamp
1989).

The calculation of the equivalent drawdown at any
time beyond the end of pumping is straightforward. For
example, after 83,040 min, the observed drawdown was
2.26 m. The drawdown at the end of pumping, t = 41,520
min, was 4.70 m. Therefore, if pumping had continued,
the drawdown that would have been observed if pumping
had been twice as long is

s1(t = 83,040 min) = s(t = 83,040 min)

+ s1(t = 83,040 min − 41,520 min)

= 2.26 m + 4.70 m = 6.96 m.

The method can be applied beyond a time correspond-
ing to twice the original duration of pumping, as long as
there are observed drawdowns. In this example, beyond
41,520 min, use is made of the calculated equivalent
constant-rate drawdowns. For example, after 124,560 min
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Figure 1. Drawdowns at observation well 11L-84 during the
pumping and recovery periods.

the observed drawdown was 1.52 m. This corresponds
to 83,040 min beyond the end of pumping. The equiv-
alent constant-rate drawdown after 83,040 min calculated
above is 6.96 m. Therefore, the constant-rate drawdown
after 124,560 min is

s1(t = 124,560 min) = s(t = 124,560 min)

+ s1(t = 124,560 min − 41,520 min)

= 1.52 m + 6.96 m = 8.48 m.

Complete results obtained by applying van der
Kamp’s method are shown in Figure 2.

Insights from Application of the van der Kamp
Method

In the Estevan example, the use of recovery data to
calculate equivalent constant-rate drawdowns lengthens
the effective duration of the pumping test from 1 month
to more than 6 months. The implications of this extension
are best illustrated by plotting the drawdowns for multi-
ple observation wells. As shown in Figure 3, even after
29 d of pumping it is only possible to identify the begin-
ning of the long-term trends in the drawdown records.
In contrast, the extended drawdown records plotted in
Figure 4 show clear increasing trends that are character-
istic of buried-channel aquifers. The dashed lines plotted
in Figure 4 represent a match to the data with the Theis
solution with T = 0.023 m2/s and S = 10−4, assuming
parallel impermeable valley walls 400 m on either side of
the pumping well. The application of the van der Kamp
analysis in this example is possible because significant
drawdowns persist more than 6 months beyond the end
of pumping. The equivalent drawdowns provide insights

2 C.J. Neville and G. van der Kamp GROUND WATER NGWA.org
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Figure 2. Complete results obtained by applying van der
Kamp’s method.
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Figure 3. Composite plot of drawdowns for four observation
wells.

for the diagnosis of the aquifer system that are not obvious
from the drawdown records.

Conclusion
The authors’ experience with pumping tests suggests

that application of the general method for the treatment
of recovery data described by van der Kamp (1989) could
have enhanced the value of almost every pumping test that
they have encountered, with only minor additional effort
in data analysis.
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Figure 4. Composite plot of equivalent constant-rate draw-
downs, with Theis solution for a strip aquifer.

Compact, robust, and inexpensive pressure transduc-
ers are now widely available. These can be left securely
in observation wells without requiring the continuous on-
site presence of field staff. The collection of extended
recovery data has therefore become much easier and more
economical. It may become standard practice to record
water-level data after the cessation of pumping for as long
as it takes to attain full recovery. Just one application of
recovery data is described in this note. Long-term mon-
itoring of recovery may allow a more robust estimate of
changes of the ambient water level during the pumping
and recovery period. Making full use of recovery data
reduces the significance of the “noise” introduced into the
drawdown data by irregularities in the pumping history.
Recovery data are also important for identifying processes
that may give rise to changes in water levels during a
pumping test that are not caused by pumping, including
the effects of nearby pumping, fluctuations in barometric-
pressure and earth tides, and can be used to check the
calibration of the pressure transducers. Full recognition
and exploitation of the potential value of recovery data
are recommended to all practitioners.
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