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Overview

Monitoring the recovery after a pumping test is generally mandated; however, in our
experience we have generally found that little attention is paid to the data that are
collected. Recovery data frequently provide some of the most reliable information from
pumping tests and may provide important insights into aquifer response that cannot be
obtained from the pumping phase of the test. These notes have been prepared to highlight
the importance of recovery data and to review their interpretation. The final section of the
notes is devoted to the use of recovery data to extend the effective duration of pumping.
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1. The significance of recovery data

Guidance documents for conducting pumping tests typically require that water levels be
monitored for a specified time following the end of pumping. In our experience,
frequently nothing is done with the recovery data after they have been collected, plotted,
and included in the appendix to a report. In some cases, the cursory treatment of recovery
data represents a genuine loss. In our opinion, the significance of recovery data is
frequently overlooked. Recovery data frequently provide some of the most reliable
information from pumping tests.

There are at least five reasons to consider recovery data.
¢ In some cases, the only data available are recovery data.

e Recovery data provide a useful check on the reliability of the drawdown observations
and on the interpretations drawn from the drawdown data.

e Recovery measurements are largely free of the noise caused by small variations in the
pumping rate at the early stages of a pumping test.

e Recovery measurements can be used to assess whether there was a background trend
in water levels during a pumping test.

e Recovery data may help diagnose the presence of hydrologic boundaries.
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2. The “smoothing effect” of recovery

An important feature of recovery data is that they are largely free of the noise that arises
from irregularities in the pumping rate at early time. At the beginning of a constant-rate
pumping test it is common to throttle the pump valve to achieve a constant rate. Two

hypothetical examples are presented to illustrate how variations in the pumping rate are

smoothed during recovery.

Example 1

A pumping test is conducted in an ideal aquifer that is 5 m thick, with a horizontal
hydraulic conductivity of 10~ m/sec and a specific storage of 10° m™!. The aquifer is
pumped for just over 1 day and the drawdowns are monitored at a distance of 5 m from
the pumping well. The pumping rate is held at a constant rate of about 10 USgpm, except

for a brief period of adjustment during the first 10 minutes.

The pumping history is tabulated below.

Time Pumping rate Pumping rate
(minutes) (USgpm) (m?/sec)
0-5 19 1.210E-3
5-10 14 9.075E-4
10— 10 6.309E-4

The pumping history is also plotted in Figure 1. The deviations from the average
pumping rate are brief. If this were an actual test, it is likely they would be missed
altogether unless the pumping rate was being recorded continuously.
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Figure 1. Pumping history for Example 1
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The calculated drawdowns for an observation well 5 m from the pumping well are plotted
in Figure 2. Because we have plotted the data on a semi-logarithmic time axis, we see
that the variations in the pumping rate at the very start of the test appear to have a
significant effect on the observed drawdowns. If we did not notice that the pumping rate
had varied, we might not immediately recognize that the appropriate portion of the
response over which the transmissivity should be estimated is from about 1,000 seconds

onwards.
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Figure 2. Drawdowns calculated at r =5 m
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The complete time-drawdown record is presented in Figure 3. As shown in the figure, the
fluctuations in the pumping rate at the start of the test have no effect on the drawdowns

recorded following the end of pumping.
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Figure 3. Complete drawdown record for the example
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The drawdown data following the end of pumping are shown in Figure 4. Two sets of
calculated drawdowns are plotted. The first set corresponds to the drawdowns with the
specified time-varying pumping history. The second set corresponds to the drawdowns
that would have been observed if the pumping rate had remained constant at the rate that
was maintained beyond the first 10 minutes of the test. Consistent with Figure 3, the
drawdowns are almost identical; the early variations in the pumping rate do not influence
the recovery portion of the response.
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Figure 4. Drawdowns at r = 5 m following the end of pumping
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Example 2
We use another hypothetical example to show that the smoothing during recovery occurs
even when there are significant variations in the pumping rate throughout a test. The

pumping rate for the second example is plotted in Figure 5.
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Figure 5. Pumping history for Example 2
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The drawdowns calculated for the pumping well are shown in Figure 6. The solid line
indicates the drawdowns for time-varying pumping. The dashed line indicates the
drawdowns that would have been observed if the pumping rate had remained constant
throughout at the average rate. The average rate is defined as the rate that yields the same
cumulative volume at the end of pumping. For this example, the cumulative volume
pumped over 3,000 seconds is 4.5 m>, so the average pumping rate is 0.0015 m?/sec.
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Figure 6. Comparison of drawdowns for time-varying and constant pumping
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The drawdowns and subsequent recovery are plotted for both cases in Figure 7. The solid
red line indicates the calculated response for time-varying pumping and the dashed blue
line indicates the response for constant pumping. The similarity of the water levels after
the cessation of pumping is striking.
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Figure 7. Drawdowns for the full duration of the pumping test
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As shown in Figure 8, plotting the water levels during only the recovery period highlights
the similarity of the water levels after the cessation of pumping. Although there are
substantial variations in the pumping rate and calculated water levels during pumping, the
responses during the recovery period are virtually indistinguishable.
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Figure 8. Comparison of recoveries for time-varying and constant pumping
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3. Interpretation of recovery data: The principle of superposition

Almost all of the theoretical models that are applied to match the data from pumping tests
are founded on the assumption that the aquifer response to pumping is linear.
Mathematically, this means that neither the coefficients appearing in the governing
equation nor the boundary conditions depend upon the drawdown. The property of
linearity has important implications for the interpretation of pumping tests. For linear
problems, solutions to complex problems can be derived by adding together known
solutions to simpler ones. The adding of solutions is called superposition. Solutions are
superimposed in time for interpreting recovery data.

Let us consider a well that is pumped at a constant rate Q for a duration 7,4, followed by
the monitoring of recovery. The drawdown and recovery data can be interpreted by
breaking the problem into two parts, as shown in Figure 9.

e Part 1 - Drawdown period: pumping at a constant rate Q

e Part 2 - Recovery period: pumping continues at a constant rate Q, but another well
starts pumping at 7,5 at a rate —Q.

|
+

>t =t »{

Figure 9. Illustration of superposition applied for a finite duration of pumping
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The application of superposition for pumping from a fully penetrating well in an ideal
confined aquifer is illustrated in Figure 10.

o<1 5= LW ()
uring pumping (¢ < fop): T 4AnT 4Tt
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Here ¢ is the total elapsed time since the start of the test and (#-op) is the elapsed time
since the end of pumping, Q is the pumping rate, 7 is the transmissivity, S is the storage
coefficient and 7 is the distance between the pumping well and the observation well.
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Figure 10. Application of the Theis (1935) solution for a finite duration of pumping

Although superposition is illustrated here with the Theis solution, it is important to note
that it can be applied for any linear aquifer model. For example, superposition can be
applied to interpret recovery data from pumping tests in unconfined aquifers with the
analysis of Neuman (1974), and in leaky aquifers with the models of Hantush and Jacob
(1955), Hantush (1960), and Neuman and Witherspoon (1969).

Page 13 of 40

P:\0996-XX _GAC-MAC\Notes\05_Significance and interpretation of recovery data\05_02_Significance and interpretation of recovery

data_Notes.docx



4. Cooper and Jacob (1946) straight-line analysis of recovery data
The Cooper-Jacob straight-line analysis has a particularly straightforward implementation
for recovery analysis. The analysis provides both a simple means of estimating the

transmissivity and of diagnosing the recovery response.

Extension of the Cooper-Jacob approximation for a finite duration of pumping

Recalling the Cooper-Jacob approximation of the Theis well function:
W(u) = —0.5772 — In{u}

the extension of the solution for the recovery period following pumping at a constant rate
for a duration fofr is given by:

= %[_0_5772 _In {rz_s}] ~ 2 1-05772 - ln{rz—s}]

4Tt 4nT AT (t—toff)

Collecting terms:

_ Q9 |_p, (TS _rs
S = In {4Tt} +in {4T(t—toff)}]

Using the properties of the log function, this can be written as:

S =

(mezm)
LA )27/ QR Ty o L
4T

r2s " 4nT t—t
() off

= 2.303 ¢ l ‘
o 4T 910 t_toff

This result implies that the late-time recovery depends only on the transmissivity, and not
the storage coefficient.
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Straight-line analysis

Let us consider two points along the plot of drawdown vs. #/t-t,:

(*1:51)

(fg,Sg)

! t (leg scale)

From the Cooper-Jacob solution we have:

_ o ol -
S1 =52 =& 2.303 “loglo {(tl—toff)} ] log10 Ktz—tdf)}]

Solving for the transmissivity yields:

T =2303%

41 (51—S2)

logio (T

t t
If ( 1 ) and ( 2 ) differ by a factor of ten (one log cycle), we denote s1-s2 as
Li—toff 2~ toff

As and the Cooper-Jacob straight-line analysis reduces to:

T =230321
41T AS
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Example 3

Let us consider an ideal confined aquifer that is pumped by a fully penetrating well. As
shown in Figure 11, the results calculated with the Theis and Cooper-Jacob solutions are
indistinguishable except at the beginning and end of pumping.
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Figure 11. Theis solution and Cooper-Jacob approximation for Exmple 3
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: } With
t=torr
this revised time axis, the end of pumping corresponds to a relatively large number and
the recovery progress leftwards in Figure 12. As recovery continues, the drawdowns
calculated with the Cooper-Jacob approximation converge with the Theis solution. It is
important to note that the theoretical drawdowns extrapolate back to zero, in the limit as
t/(t-t,) — 1. If they do not, there is probably a temporal trend in the water level data that
should be extracted prior to further analysis. This may also be diagnostic of the influence
of a hydrologic boundary.

Let us re-plot the recovery portion of the data, with an alternate time axis, {
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Figure 12. Theis solution and Cooper-Jacob solutions, semilog recovery plot
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5. Diagnosis of aquifer structure from recovery data, Example 4

Recovery data are particularly useful for diagnosing boundary effects. These boundary
effects may not be detectible in the drawdown portion of the test, but their manifestation
in the recovery data may provide valuable insights into the structure of an aquifer.

We will consider the simple conceptual model shown in Figure 13 to illustrate the
potential utility of recovery data for diagnosing complexities in aquifer structure. We
consider a confined circular aquifer that is homogeneous and isotropic. We depart from
the ideal Theis model in considering an aquifer that has a finite extent. Three cases will
be considered:

1. Radially infinite aquifer (Theis);
2. Radially bounded aquifer, Constant-head at R = 1000 m (Theis-CH); and
3. Radially bounded aquifer, No-flow at R = 1000 m (Theis-NF).

O Obs 1

Figure 13. Conceptual model for an aquifer of finite radial extent
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For the example calculations, a transmissivity and storativity of 6.944x102 m?/min and
1.0x10* are assumed. The pumping rate is 1.0 m*/min and the well is pumped for

120 minutes. Drawdowns are calculated at an observation well located at » = 10.0 m. As
shown in Figure 14, the drawdowns calculated for all three cases are essentially the same.
If we did not know that the aquifer was bounded, we would not be able to detect it from a
pumping test of this duration.
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Figure 14. Calculated drawdowns during the pumping period
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Calculated drawdowns versus time for the complete pumping and recovery period are
plotted for the three cases in Figure 15. Although the drawdowns during the pumping
period are nearly identical, there are systematic differences in the drawdowns during the
recovery period. If we were fitting the complete drawdown record with the Theis solution
for an infinite aquifer, we would notice that we could match the data from the pumping
period but not the data from the recovery period. For a constant-head boundary
(Theis-CH), the aquifer recovers too quickly. For a no-flow boundary (Theis-NF), the
aquifer never recovers completely.
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Figure 15. Calculated drawdowns during pumping and recovery
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The recoveries calculated for the three cases are shown on Cooper-Jacob semilog plot in
Figure 16. The results are highly diagnostic. The long-term recoveries for the bounded
aquifers do not approach zero drawdown as #/t-to¢r approaches 1.0. In the case of the
aquifer surrounded by a surface of zero-drawdown (constant-head), the aquifer recovers
completely before #/(#-,) approaches a value of 1.0. In the case of the aquifer surrounded
by an impermeable boundary (no-flow), the aquifer never fully recovers.
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Figure 16. Semilog recovery plot
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6. The van der Kamp (1989) method to extend the effective duration of pumping

van der Kamp (1989) introduced a different approach for working with recovery data.
Although his approach is founded on classical superposition theory, it nevertheless
represents a very useful extension of existing methods. van der Kamp’s method appears
to have been overlooked. As far as we are aware, it has not been implemented in any of
the widely used interpretation packages. In our opinion this is an important oversight, and
this section of the notes has been prepared in part to renew interest in this approach.

6.1 Theory of the van der Kamp method

For a general linear conceptual model, the drawdown s(7,#) caused by pumping at a
variable rate Q(t) can be written as:

s(r,t) = ftQ(T) G(r,t —1)dt
0

This general relation is referred to as a convolution integral; the term G(7,¢) represents the
drawdown at a distance r caused by pumping for an instant at time ¢ = 0, and is referred to
frequently as the Green’s function for a particular problem.

Let us consider an arbitrary pumping history represented by a set of discrete steps
(Figure 17).

Q A
QNP-!
Qm’i[ AQNP
] Lg, I Ne
AQZ e |
|
Q, |
: time €
‘ T AT ! I ~t
tsz fSa ts}?"f {SNP

Figure 17. Discrete representation of an arbitrary pumping history
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The pumping history for a discrete set of steps can be written as:

NP(t)

QW = > AQH(t - ts)
i=1

Here H is the Heaviside step function, which is defined as:

H(t—ts;)) =0 ift<ts;
=1 ift>ts;

The term ts; designates the time at which the i’ change in the pumping rate occurs. At
that time the pumping rate changes by an increment AQ; The term NP(¢) designates the

number of steps that have occurred up to any time ¢.

Substituting for the pumping history in the convolution integral yields:

¢ NP(T)

s(r,t)zf Z AQ H(r —ts)) | G(r,t — 1) dr
0\ ==

Reversing the order of the summation and integration and using the properties of the
Heaviside step function yields:

NP(t)

t—ts;
s(rt) = Z AQl-f G(r,0) dr
i=1 0
Expanding this relation yields:

t t—tSZ
5,0 =0 | 66,0+ (@ -0 [ 6rDdr+-
0 t—tSISP
- +(Qnp — Qnp-1) f G(r,T)dr
0
Let us designate:

s:(r,t) = Q, [, G(r,7)dr

The term s; represents the drawdown that would be observed at time ¢ if the pumping rate
had remained constant at a rate Q.
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When we substitute for s;, the expanded relation for the drawdown becomes:

s(r,t) =s,(r,t) + (Q, — Ql)f SZG(T 7)dT +--

t—tsnp
- +(Qnp — Qnp- 1)] G(r,T)dt

Making use of the definition of s;, we can write this as:

s(r,t) =s.(r,t) + @sl(r, t—ts,) +-+ Qe _QQNP_l) s;(r,t —tsyp)
1 1

Rearranging to solve for s; yields:

(QZ - Ql) 51(7", £ — tSz) e+ (QNP - QNP—l)
Q1 Q1

s;(r,t) =s(r,t) — s;(r, t — tsyp)

This is the general form of the van der Kamp (1989) algorithm for determining the
equivalent drawdown that would be observed at any time if the pumping rate were
constant at a rate Q.

6.2 Application of the van der Kamp method for pumping at a constant rate
followed by recovery

Although the general form of the van der Kamp (1989) algorithm appears to be relatively
complicated, it has a straightforward interpretation for the analysis of recovery following
pumping a constant rate. For this case, during the recovery period we have NP = 2,

ts2 = tof, and Q> = 0, and van der Kamp’s general form reduces to:

s;(r,t) =s(r,t) + sl(r, t — toff)

This final result has a straightforward interpretation. If pumping had continued at a
constant rate (1, the drawdown that would have been observed at any elapsed time,
denoted s;, would be equal to the actual drawdown plus the drawdown observed at time

t-Lofy.
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Example

The van der Kamp approach is illustrated with an example calculation. We will consider
a pumping well that penetrates the full thickness of an ideal confined aquifer. The

assumed parameter values are listed below:

Transmissivity, 7= 1.0x10"* m%/sec;
Storativity, S = 1.0x10%;

Pumping rate, O = 1.7x10 m%/sec;
Duration of pumping, #,5= 250 seconds; and
Radial distance, » = 10 m.

The calculated drawdown history is plotted in Figure 18.
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Figure 18. Calculated drawdowns during pumping and recovery
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Let us estimate what the drawdowns would have been if the pumping had continued at a
constant rate of 1.7x103 m>*/sec. To demonstrate the van der Kamp method, a hand
calculation is made at # = 400 seconds.

Let us recall the general formula:

s;(r,t) =s(r,t) + sl(r, t — toff)

The pumping lasted 250 seconds; therefore, the equivalent constant-rate drawdown at
t =400 seconds is given by:

s1(t =400 s) = s(t = 400 s) + s, (t — to5y = 400 s — 250 s = 150 s)
From Figure 13, we observe from Figure 17 that the drawdown at 400 seconds is 1.33 m.

At t =150 s, the well is still pumping; therefore s; = s and we can again estimate the
drawdown directly from Figure 17. The drawdown after 150 seconds is 15.98 m:

The equivalent drawdown is therefore given by:
5;(t=400s)=133m+ 1598 m=1731m

This calculation is shown graphically in Figure 19. The red line is simply the pumping
portion of the data, flipped in sign and shifted by the duration of pumping.
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Figure 19. Calculation of equivalent constant-rate drawdown at 400 seconds
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The results of applying the van der Kamp method for the entire drawdown record are
shown in Figure 20. The drawdowns calculated with the Theis (1935) solution for
continuous pumping at a constant rate of 1.7x107* m>/sec are also plotted in Figure 20.
The results obtained with the van der Kamp method match exactly the results obtained

with the Theis solution.
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Figure 20. Actual drawdown and equivalent constant-rate drawdown
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7. Case study: Estevan, Saskatchewan

In this case study, the van der Kamp (1989) method is applied to extend the effective
duration of pumping of a pumping test conducted in a confined buried-channel aquifer
near Estevan, Saskatchewan. The aquifer is described in Walton (1970), van der Kamp
and Maathuis (2002), and Maathuis and van der Kamp (2003). Several pumping tests
have been conducted in the aquifer; the data considered in this case study were obtained
during a test conducted in 1984 and reported in van der Kamp (1985; 1989).

Pumping test data

e The aquifer was pumped at a constant rate for 41,520 minutes (about 29 days).

e Water levels following the end of pumping were monitored for an additional
249,000 minutes (173 days).

Drawdowns at observation well 11L-84 during the pumping and recovery periods are
shown in Figure 21. For subsequent analysis, the original observations are supplemented
with interpolated values indicated by the crosses. The interpolated values are taken from
van der Kamp (1989; Table 2) and are smoothed slightly with respect to the original
observations.
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Figure 21. Raw drawdown data with interpolated values
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Application of the van der Kamp (1989) method

For pumping at a constant rate followed by recovery, the drawdown that would be
observed if the pumping had continued through the recovery period, s,(7,?), is calculated
as:

s;(r,t) =s(r,t) + sl(r, t — toff)

Here s(7,?) is the actual observed drawdown at elapsed time ¢, and 7,5 is the duration of
pumping (#-f is the elapsed time since the end of pumping).

Extended drawdowns at three times beyond the end of pumping will be calculated. Recall
that the well was pumped for 41,520 minutes.

¢ = 51,900 minutes

e Actual drawdown at r = 51,900 minutes: 3.65 m
e FElapsed time since the end of pumping: 51,900 — 41,520 = 10,380 minutes
¢ Constant-rate drawdown at #-,;= 10,380 minutes: 1.75 m

The equivalent constant-rate drawdown is therefore:

s;(r,t) =3.65+1.75=540m
The results of the calculation are shown on Table 1. Using the recovery data from
10,380 minutes after the end of pumping, the effective duration of pumping is increased

to 51,900 minutes.

Table 1. Extended results for 7 = 51,000 minutes

t s (t) t-tos S (t-to5) S
(minutes) (m) (minutes) (m) (m)
0 0.00 0.00
10380 1.75 1.75
20760 3.02 3.02
31140 4.00 4.00
41520 4.70 4.70
51900 3.65 10380 1.75 5.40
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t = 83,040 minutes

Actual drawdown at ¢ = 83,040 minutes: 2.26 m
Elapsed time since end of pumping: 83,040 — 41,520 = 41,520 minutes
Constant-rate drawdown at #-t,;= 41,520 minutes: 4.70 m

s;(r,t) =226 m+4.70m = 6.96 m

Complete results up to 83,040 minutes are assembled on Table 2.

Table 2. Extended results to 7 = 83,040 minutes

t s (t) t-tor s (t-t.¢) $1
(minutes) (m) (minutes) (m) (m)
0 0.00 0.00
10380 1.75 1.75
20760 3.02 3.02
31140 4.00 4.00
41520 4.70 0 4.70
51900 3.65 10380 1.75 5.40
62280 3.07 20760 3.02 6.09
72660 2.60 31140 4.00 6.60
83040 2.26 41520 4.70 6.96

Page 32 of 40

P:\0996-XX _GAC-MAC\Notes\05_Significance and interpretation of recovery data\05_02_Significance and interpretation of recovery
data_Notes.docx



t = 124.560 minutes

e Actual drawdown at £ = 124,560 minutes: 1.52 m

e FElapsed time since end of pumping: 124,560 — 41,520 = 83,040 minutes

A total elapsed time of 124,560 minutes corresponds to 83,040 minutes after pumping
stopped, which is longer than the duration of pumping. Beyond an elapsed time of 2#,4,
we start to make use of the results for s; that have been assembled already. The
calculations can be continued as long as there are measurable drawdowns.

e Constant-rate drawdown at #-z,5= 83,040 minutes: 6.96 m

s;(r,t) =1.52m+ 6.96 m = 8.48 m

Complete results for all of the available drawdown data are assembled on Table 3 and are

plotted in Figure 22.

Table 3. Results of equivalent constant-rate drawdown calculations

t s (t) t-tor S (t-to) S
(minutes) (m) (minutes) (m) (m)
0 0.00 0.00
10380 1.75 1.75
20760 3.02 3.02
31140 4.00 4.00
41520 4.70 0 4.70
51900 3.65 10380 1.75 5.40
62280 3.07 20760 3.02 6.09
72660 2.60 31140 4.00 6.60
83040 2.26 41520 4.70 6.96
124560 1.52 83040 6.96 8.48
166080 1.18 124560 8.48 9.66
207600 0.95 166080 9.66 10.61
249120 0.76 207600 10.61 11.37
290640 0.68 249120 11.37 12.05
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Figure 22. Complete record of equivalent constant-rate drawdowns
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In the Estevan case study, the use of recovery data with the van der Kamp method
extends the effective duration of pumping from one month to more than six months. The
drawdown observed at the end of pumping is 4.70 m. The equivalent constant-rate
drawdown for the last recorded water level is 12.05 m. The implications of this extension
are best illustrated by plotting the raw drawdowns and the equivalent constant-rate
drawdowns against the logarithm of time, as shown in Figure 23. We see that even after
29 days of pumping, it is possible to only identify the beginning of the long-term trend of
the drawdown. In contrast, the accelerating trend that is characteristic of a buried-channel
aquifer is clearly evident in the equivalent constant-rate drawdowns.
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Figure 23. Semilog plot of equivalent constant-rate drawdowns
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8. Application of the van der Kamp method for the bounded circular aquifer
example

The utility of the van der Kamp method is further demonstrated by revisiting the example
of the bounded circular aquifer. The complete drawdown histories from Figure 15 are
reproduced below.
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The equivalent drawdowns for extended pumping for the three cases are plotted in
Figure 24. As discussed previously, it is not possible to detect the presence of the aquifer
boundary with only the data from the pumping portion of the test, up to an elapsed time
of 120 minutes. However, the boundary effects are clearly evident when the van der
Kamp method is used to extend the effective duration of pumping. For the case of a
zero-drawdown outer boundary (CH, constant-head), there is a distinct flattening of the
drawdown beyond 120 minutes. In contrast, for the case of an impermeable boundary
(NF, no-flow), the drawdowns accelerate beyond 120 minutes.
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Figure 24. Equivalent constant-rate drawdowns
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As shown in Figure 25, when the drawdowns for the extended duration of pumping are
assembled on a semilog plot, the boundary effects manifest themselves as a deviation
from the straight-line response.
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Figure 25. Equivalent constant-rate drawdowns, semilog plot
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7. Summary of key points

1. Recovery data may be some of the best aquifer testing data available.

2. Recovery data are straightforward to interpret using superposition.

3. The Cooper-Jacob semilog plot of recovery data has useful diagnostic features.

4. The van der Kamp (1989) method of adjusting recovery data is a simple and
illuminating technique for creating equivalent constant-rate pumping test data. The

method can be used to effectively extend the duration of pumping.

5. Recovery data may offer insights into aquifer behavior not available from drawdown
data.

Page 39 of 40

P:\0996-XX _GAC-MAC\Notes\05_Significance and interpretation of recovery data\05_02_Significance and interpretation of recovery
data_Notes.docx



8. References

Cooper, H.H., Jr., and C.E. Jacob, 1946: A generalized graphical method for evaluating
formation constants and summarizing well-field history, Trans. American
Geophysical Union, vol. 27, no. 4, pp. 526-534.

Hantush. M.S., 1960: Modification of the theory of leaky aquifers, Journal of
Geophysical Research, vol. 65, no. 11, pp. 3713-3725.

Hantush, M.S., and C.E. Jacob, 1955: Non-steady radial flow in an infinite leaky aquifer,
Transactions of the American Geophysical Union, vol. 36, no. 1, pp. 95-100.

Maathuis, H., and G. van der Kamp, 2003: Groundwater resource evaluations of the
Estevan Valley aquifer in southeastern Saskatchewan: A 40-year historical
perspective, in Proceedings of the 56th Canadian Geotechnical and 3" Joint IAH-
CNC and CGS Conference, Winnipeg, Manitoba, 4 p.

Neuman, S.P., 1974: Effect of partial penetration on flow in unconfined aquifers considering
delayed response of the water table, Water Resources Research, vol. 10, no. 2,
pp- 303-312.

Neuman, S.P., and P.A. Witherspoon, 1969: Theory of flow in a confined two aquifer
system, Water Resources Research, vol. 5, no. 4, pp. 803-816.

Theis, C.V., 1935: The relation between the lowering of the piezometric surface and the
rate and duration of discharge of a well using ground-water storage, Transactions.
American Geophysical Union, 16" Annual Meeting, Part 2, pp. 519-524.

van der Kamp, G., 1985: Yield estimates for the Estevan Valley aquifer system using a
finite element model, Saskatchewan Research Council, Publication
No. R-844-4-C-85.

van der Kamp, G., 1989: Calculation of constant-rate drawdowns from stepped-rate
pumping tests, Ground Water, Vol. 27, No. 2, pp. 175-183.

van der Kamp, G., and H. Maathuis, 2002: The peculiar groundwater hydraulics of
buried-channel aquifers, in Ground and Water: Theory to Practice, Proceedings of
the 55" Canadian Geotechnical and 3™ Joint IAH-CNC and CGS Groundwater
Specialty Conference, Niagara Falls, Ontario, pp. 695-698.

Walton, W.C., 1970: Groundwater Resource Evaluation, McGraw-Hill Book
Company, New York, New York.

Page 40 of 40

P:\0996-XX _GAC-MAC\Notes\05_Significance and interpretation of recovery data\05_02_Significance and interpretation of recovery
data_Notes.docx



Critical Thinking in Aquifer Test Interpretation

The significance and interpretation of recovery data:
Additional readings

Christopher J. Neville
S.S. Papadopulos & Associates, Inc.
Last update: April 28, 2025

1. van der Kamp G., 1989: Calculation of constant-rate drawdowns from stepped-rate
pumping tests, Ground Water, Vol. 27, No. 2, pp. 175-183.

2. Neville, C.J., and G. van der Kamp, 2009: A general method for using recovery data
for pumping tests in complex hydrogeological settings, Proceedings of GeoHalifax
2009: 62™ Canadian Geotechnical Conference & 10™ Joint CGS/IAH-CNC
Groundwater Conference, September 20—-24, 2009, Halifax, Canada, 5 p.

3. Neville, C.J. and G. van der Kamp, 2012: Using recovery data to extend the effective
duration of pumping tests, Ground Water, v. 50, no. 5, pp. 804-807.

Page 1 of 1

P:10996-XX _GAC-MAC\Notes\05_Significance and interpretation of recovery data\05_03_Significance and interpretation of recovery
data_Additonal readings.docx






Calculation of Constant-Rate Drawdowns

from Stepped-Rate Pumping Tests

by G. van der Kamp?

ABSTRACT

Drawdown and recovery data obtained for stepped-
rate pumping tes's can be used to calculate the drawdowns
that would occur if the test were carried out a constant rate
without stopping. The recovery phase of constant-rate
pumping tests can be analyzed by the same method because
cessation of pumoing can be treated as a step change of
pumping rate. The calculation assumes only that pumping
during each step s at a constant rate, and that the principle
of superposition s applicable, i.e., that the ground-water
system is linear a1d time-invariant. It does not depend on
the availability o theoretical expressions for the drawdown
due to pumping. The calculation can be carried out for as
long as water-level measurements are continued; however,
possible errors in the values of calculated drawdown increase
with increasing time, thus limiting the practical length of
time for which the calculated values are reliable.

The constat-rate drawdown curves characterize the
response of the linear time-invariant ground-water system
to pumping. The:’ can be used for the determination of
formation param:ters if an appropriate theoretical model is
available. They cun also be used directly to predict draw-
downs, and the scope of this application can be broadened
by use of the reciprocity principle. In either case the use
of recovery data :an significantly extend the effective
duration of pumping tests.

INTRODUCTION
In the theory and practice of aquifer pumping
tests, many methods have been developed for
analyzing drawdown data with changing pumping

2 gaskatchewan Research Council, 15 Innovation
Boulevard, Saskatoon, Saskatchewan, Canada S7N 2X8.

Received Jinuary 1986, revised September 1987 and
May 1988, accepred July 1988.

Discussion open until September 1, 1989.

Vol. 27, No. 2—GROUND WATER—March-April 1989

rates, and for analyzing recovery data for constant-
rate tests (e.g., Theis, 1935; Moench, 1971; Reed,
1980). A common characteristic of most of these
methods is that they depend on the prior assump-
tion of a theoretical aquifer model (e.g., leaky
artesian aquifer, Moench, 1971). The principle of
superposition is then used to generate ‘‘custom-
ized” type curves for the particular pumping history
of interest, and aquifer parameters are determined
by matching the measured drawdown and recovery
to these type curves.

An important drawback of this approach is
that the assumed aquifer model may not be
appropriate because of unrecognized hydrogeo-
logical factors such as aquifer boundaries. Because
of the extra complications introduced by a changing
pumping rate, deviation from the drawdown
behavior predicted by the assumed aquifer model
may not be readily apparent. This consideration,
plus the effort involved in generating new type
curves for each new problem, has probably
contributed to the limited use of some of these
methods. By contrast, a large body of analytical
techniques and diagnostic experience is available
for analyzing drawdown data from constant-rate
pumping tests.

In this paper it is shown that recovery data
for constant-rate tests, or drawdown and recovery
data for stepped-rate tests can be used to calculate
the hypothetical drawdown which would be
observed were the test carried out at a2 constant
rate without stopping. The proposed method
assumes only that the principle of superposition is
applicable; it does not require other assumptions
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concerning formation characteristics and geometry.
The calculation :s simple and can be readily carried
out by means of a calculator or small computer.

The main :dvantage of the proposed method
is that it allows znalysis of drawdown and recovery
data from stepped-rate and constant-rate pumping
tests by means of the available analysis techniques
for drawdown duta from constant-rate tests and
without the need to generate special sets of type
curves. The use of recovery data as an integral part
of the analysis means that the duration of the test
iseffectively extended beyond the duration of
pumping.

Constant-rate drawdown curves characterize
the response of a linear ground-water system to
pumping or injection. For some cases there may be
little point in calculating formation parameters by
“force-fitting”’ the drawdown data to some
theoretical model of the aquifer. In principle, the
drawdown curve: can be used directly to predict
drawdown due to pumping. The linear theory of
hydrologic systems (Dooge, 1973) can be utilized
for this purpose, and its application can be broad-
ened by use of tt e reciprocity principle (McKinley
etal., 1968).

The purpose of this paper is to show how
constant-rate drawdown curves can be calculated.
The theory is presented and the method of calcula-
tion Is illustrated by examples of actual pumping
tests. The application of the drawdown curves in
terms of linear system theory and the reciprocity
principle is also triefly discussed. Possible limita-
tions on use of the method are reviewed, but its
practical usefulness can only be established by
extensive field testing.

THEORY

Calculation of Constant-Rate Drawdown Curves

The principle of superposition can be applied
to any ground-wz ter system which is linear and
time-invariant (B:ar, 1979, p. 152; Dooge, 1973,
p- 85). Linearity is implicit in the basic ground-
water flow equat:ons, i.e., Darcy’s Law and
constant proportionality between change of head
and release of wa:er from storage. The condition of
time-invariance ir eans that permeability and specific
storage must be constant, and that there must be
no change with time in the geometry of the system
(e.g., no dewatering). These conditions are assumed
for nearly all available pumping-test theory and
presumably are widely applicable.

Suppose tha: a production well is pumped
without stopping at constant rate Q,, starting at
time t = 0.. The resulting constant-rate drawdown
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curve for a given observation point will be denoted
by so(t). Next, suppose instead that at time t = t,,
the pumping rate is changed to Q,. This change
can be treated as if the well continued to be
pumped at rate Q, and at t, additional pumping at
arate Q; — Qo is superimposed (see Figure 1).
Similarly, if at t = t, the rate is changed to Q, the
change can be treated as additional pumping at a
rate Q, — Q,. Note that Q; — Q, and Q, — Q,, etc.
can be negative. By application of the superposition
principle, the total drawdown due to the stepped-
rate pumping is
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Fig. 1. Hlustration of superposition as expressed by
equation (1) for a two-step pumping test with subsequent
recovery: (a) actual pumping rate; (b) representation of
actual pumping rate as sum of three continuing components;
{c) drawdown due to pumping at rate Qq: (d) drawdown
due to pumping at rate Q;, — Q,; (e} drawdown (recovery)
due to pumping (injection) at rate —Q,; (f} resultant draw-
down due to actual pumping rate (sum of c, d, and e).




where s(t) = tot il drawdown; s, (t) = constant-rate
drawdown due 10 pumping at a constant rate Qo
starting at t = 0; t = time since start of pumping;
and Q,, Q,, etc are the constant pumping rates
during the time intervals t, to t;, t; to t;, €tc.
The physical meaning of equation (1) is illustrated
in Figure 1. Note that so(t) = 0 for t less than or
equal to zero.

The purpo e of this paper can now be stated
more precisely: it is to show how the constant-
rate drawdowns s, (t) can be calculated from the
drawdowns s(t) measured during the pumping and
recovery phases of stepped-rate pumping tests.

It is impor -ant to note that any “‘constant-
rate”’ pumping test of finite duration can be con-
sidered as a step ped-rate test because the end of
pumping is essentially a step change of pumping
rate. This particular application of the theory is
discussed in mo e detail in the following section.

Using sum nation notation, equation (1)
leads to:

Q- Q1)

so(t) = (1) = T
=1 o

]

St-1) (@)

where n = the namber of pumping-rate steps; and
s(t) is the drawlown, i.e., the measured deviation
of water level fiom the static water level. If water-
level measurements are taken during the recovery
phase (i.e., afte; pumping ceases), then Q, = 0.

The actual calculation of s,(t), using equation
(2), proceeds fcr successive time intervals, each of
duration t,, as {ollows:

1.0 < t< t,. For this time interval sy (t — t,),
so(t — t,), etc. are equal to zero, thus:

so(t) = s(t) (3)

2.t, < t< 2t,. For this time interval the
values of s, (t — t;) have already been calculated in
the previous interval because t — t, is less than t,.
Similarly the values of so(t = t;), so(t - t3), etc. will
either be zero i' t, > 2t,, t3 > 2t,, etc. or these
values will have been obtained from the first time
interval. Thus s,(t) in this time interval can be
calculated with equation (2), making use of the
values of s, (t) computed for the previous time
interval.

3.2t, < t < 3t,, etc. For these time intervals
so(t) can again »e calculated with equation (2)
using the value: of s,(t) calculated for the previous
time intervals.

Equation 2) can be conveniently applied by
using a constan: time step At starting at time t = 0,
and calculating s, (t) at successive multiples of At,
so that the end results are values for s4(0), se(At),

so(241), s (3A1), etc. The value of At may be
smaller than or equal to t,. Interpolation must be
used if the times of drawdown measurements or
the times at which pumping rate changes occurred
are not exact multiples of At. The final result of
the calculation will be values of sy (t), the constant-
rate drawdown, extending for as long as the
measured water levels differ significantly from the
static water level. The method of calculation is
illustrated in the EXAMPLES section of this paper,
using field data for a three-step pumping test.

The Special Case of Recovery After a
Constant-Rate Test

The most common application of the proposed
method is likely to be in the analysis of residual
drawdown data obtained during the recovery phase
of a constant-rate pumping test. As already pointed
out, reducing the pumping rate to zero can be
treated as a step change of the pumping rate. For
this simple case (Q, = 0), equation (2) gives:

So(1) = s(t) + so(t—ty) 4)

where t, = duration of pumping, and s(t) = mea-

sured drawdown during and after pumping.
Suppose that significant residual drawdowns

persist to a time equal to or more than p times, but

less than p + 1 times, the duration of pumping:
pty <t< (p+ 1y p=0,1,2,3,.... (5)

The term so(t — t,) in equation (4) can be related
to the previous time interval by substituting t - t,
for t in equation (4):

so(t—t,) = s(t= 1) +50(t - 2t,) (6)
Combining equation (6) with equation (4) gives
$o(t) = s(t) + s(t—t;) + s5o(t — 2t,) (7)

This iteration can be continued to t - pt,, the time
interval when the well was pumped. For this
interval the measured drawdown is identical with
the constant-rate drawdown, i.c.,

s(t - pty) = so(t = pty). The iteration, therefore,
leads to:

so(t) = s(t)+s(t—t)+s(t—ty)+....+s(t-pty)

In summation notation, equation (8) can be
written as:

(@)= £ s(t-kty) ©)
k=0

Equation (9) states that the drawdown which
would have occurred if pumping had continued is
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just the sum of the actual measured drawdowns at
intervals t, apart gcing back to the time interval
during which the well was actually pumped. The
calculation of the constant-rate drawdowns for the
recovery phase of a constant-rate pumping test
thus consists of a s mple addition.

Equation (9) nllows calculation of s¢(t) for as
long as water-level measurements are continued.
However, the measured drawdown, s(t), is subject
to the uncertainty of measurement errors and of
natural changes of the static water level. If the
possible error in the measured drawdown is e(t),
then the actual val ie of the drawdown lies in the
range s(t) ¢ e(t). Ii this possible error is included
in equation (9), th: result is:

So(t) = E s(t—kty) £ E(1) (10)
k: 0

where E(t):: ‘S e(t - kt,) an
k=0

E (t) is the total pcssible error in the value of sq (t).

Equations (1)) and (11) show that the possible
errors in measured drawdown accumulate in the
calculation of the -onstant-rate drawdown s, (t).
The possible error in the measured drawdown, s(t),
will tend to increase with time due to increasing
uncertainty of the natural static water level, and
the value of s(t) will decrease with time because
the water level is recovering. Thus, at some point in
time, the possible error will become large compared
to the measured drawdown and calculation of the
constant-rate dravidowns s, (t) beyond this time
will have little meining. The use of recovery data
for extrapolating irawdown curves should therefore
always be accompanied by a realistic estimate of
possible errors. This is especially important if
hydrogeologic int :rpretations are to be made on
the basis of mino1 inflections in the shape of the
constant-rate drawvdown curves.

An example of the use of recovery data for a
constant-rate pun.ping test is given in the
EXAMPLES section of this paper.

Use of Constant-13ate Drawdown Curves to Predict
System Behavior

From the pcint of view of systems theory, the
purpose of many pumping tests (or aquifer perfor-
mance tests) is to obtain constant-rate drawdown
curves for one or more observation points. In this
paper it is shown how such curves can be obtained
from stepped-rat:: tests and how they can be
extended in time by use of data obtained during
the recovery pha:e. The constant-rate drawdown
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curves obtained in this manner characterize the
response of the ground-water system to pumping
and can be used to analyze and predict the
behavior of the system.

Probably the most well-known use of
constant-rate drawdown curves is to determine
aquifer parameters such as transmissivity by match-
ing the measured curves to theoretical type curves
(e.g., Theis, 1935; Kruseman and de Ridder, 1970;
Reed, 1980). However, such applications are only
meaningful if the theoretical model for which the
type curves were calculated is a reasonable approxi-
mation of the actual hydrogeological conditions at
the test site.

For some cases the constant-rate drawdown
curves themselves can be used directly to describe
and predict the response of a ground-water system
to pumping. The hydrogeological setting of many
ground-water systems is too complex to be
described by a few formation parameters, and the
empirical constant-rate drawdown curves for such
systems provide information about the response of
the systems which may be largely lost by “‘force-
fitting” to a simplistic model. In particular, the
drawdown at a given point in the system due to
pumping at varying rates from a well can be
predicted if the constant-rate drawdown curve at

that point has been determined by test pumping of .

the well.

The use of constant-rate drawdown curves to
predict the behavior of a ground-water system can
be facilitated by introducing the concept of
“specific drawdown curves,” here defined as the
constant-rate drawdown curves for a unit pumping
rate. In equation form this definition can be
expressed by:

Soij (1)
on

Xij(t) = (12)

where Xij(t) = the specific drawdown curve for
well i in response to pumping from well j, and
Soij (t) is the constant-rate drawdown curve for well

i due to pumping at a constant rate Qo from well j.

The name “specific drawdown curve” is proposed
here in analogy with the familiar term *'specific
capacity.” The specific drawdown is the drawdown
in an observation well for a unit pumping rate from
a pumped well. It represents the response of the
linear ground-water system at point i to a unit rate
of withdrawal at point j. In general systems theory,
the corresponding function goes by names such as
“indicial admittance” (Wylie, 1960). In the unit
hydrograph theory of surface-water hydrology, the

corresponding function is the *‘S-curve’” or




“S-hydrograph” Dooge, 1973), and the problem
discussed in this japer of determining so(t), or
Xij (t), if s(t) and Q(t) are measured, is equivalent
to the identification problem of surface hydrology.
The linear theory' of surface hydrologic systems
(Dooge, 1973) may therefore provide a useful
source of theory and experience for the analysis
of subsurface hy rologic systems.

With the fo-egoing definition of specific
drawdown, equa:ion (1) can be written in the form:

sij(t) = kgo (Qxj — Qi-1,j) Xij (t— ) (13)

where s;j(t) is th : drawdown in well 1 due to pump-
ing from well j; (j is the rate of pumping from
well j during the k™ pumping interval starting at
time t = ty (Qk;j =0 fork=-1,tg =0 fork=0);
and nj is the nuriber of pumping steps for well j.

For continnously varying pumping rates,
equation (13) can be written in integral form (e.g.,
Wylie, 1960, p. $38):

t dqj(t') , ,
sij(t) = Qoj Xi (1) + (.)f T Xjj(t—t')de' (14)
where Qo = initial rate of pumping from well j
starting at time - = 0; and qj(t) is the time-variable
rate of pumping from well j.
The total drawdown at well i due to pumping
from m wells is:

t43

i) = Z sij(n) (15)
j

1

Equations 13), (14), and (15) allow prediction
of the drawdow at point i once the specific draw-
down curves Xj;(t) have been determined.

Specific driwdown curves can be calculated
by the same me :hods as those for constant-rate
drawdown curves described in this paper. The only
additional step :s to divide by the pumping rate
[equation (12)] For some problems such as type-
curve analysis,  se of specific drawdown curves
rather than con:tant-rate curves would only intro-
duce an unnece: sary extra calculation step. For
problems such s prediction of drawdowns by
means of equations (13), (14), or (15), the use of
specific drawdown curves allows a more concise
and clear statement of the problem. The essential
point is that eiter constant-rate or specific draw-
down curves provide a direct description of the
response of the ground-water system to pumping.

The usefulness of equations (13), (14), and
(15) can be much increased by use of the reciprocity
principle (McKinley et al., 1968). This principle

states that for any pair of wells i and j, the
constant-rate drawdown curve will be the same,
whether well i is pumped and j is the observation
well, or vice versa. In terms of specific drawdown
curves, the reciprocity principle is expressed by:

X;j(t) = X;i(t) (16)

For example, by using the reciprocity
principle, the interference between two production
wells can be accurately predicted by pumping only
one, measuring the drawdown in the other, and
using this drawdown data to obtain the specific
drawdown curve for the pair. Similarly, if it is
necessary to predict the drawdown at a particular
point due to pumping from a number of wells (e.g.,
for pressure relief), then it would suffice to pump a
well at that point and observe the drawdown in all
the proposed pumping wells. The specific drawdown
curves obtained in this manner can then be used
with equation (15) to predict the total drawdown
at the point in question for any combination of
pumping regimes at the other wells.

McKinley et al. (1968) show that the
reciprocity principle holds for a heterogeneous
medium, and they state that ‘‘the reservoir must
not be pressure sensitive.” In other words, the
properties of the system must not change with
changes of fluid pressure. It is not immediately
clear from the proof of the reciprocity principle
given by McKinley et al. whether it is in fact valid
under the same general conditions as the principle
of superposition, i.e. for any linear time-invariant
ground-water flow system.

EXAMPLES

The following two examples of actual cases
are presented mainly to illustrate the method of
calculation of constant-rate drawdown curves. The
practical usefulness of the method can only be
evaluated by applying it for a variety of problems
and hydrogeologic conditions. Such an evaluation
is beyond the scope of this paper.

Three-Step Pumping Test Near luka, lllinois
Walton (1970, pp. 345-349) described a three-
step pumping test on a well near Iuka, Illinois.
Strictly speaking, a constant-rate drawdown curve
should not be calculated for this test because a
seepage face developed in the pumping well during
the test and the system was therefore not
time-invariant. However, Walton gives drawdown
data for observation wells, and this case history
therefore provides a realistic example of the calcula-
tion method. (A literature review indicates that
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during step drawvdown tests on production wells,
drawdowns in observation wells are usually not
measured, or at least are not published).

For the te:t at Iuka the pumping well (No. 3)
was initially puinped at 0.341 1/sec (5.4 gpm). The
pumping rate wis then increased to 0.587 1/sec
(9.3 gpm) at abut 120 minutes after pumping
started, and inc ‘eased again to 0.801 l/sec (12.7
gpm) at about 180 minutes. Pumping stopped at
250 minutes. The measured drawdowns, s, in the

observation wel (No. 2) are summarized in Table 1.

Some of these values have been calculated by
interpolation from the data given by Walton. The
pumping rates and measured drawdowns are also
presented graphically in Figure 2.

To calcula e the constant-rate drawdowns for
well No. 2, using equation (2), the following values
are used: '

Qo = 0.341 l/sec
Q, = 0.587 l/sec
Q. = 0.801 l/sec
t; = 120 minutes
t, = 180 minutes
At = 10 minutes

With these num >ers, equation (2) becomes:

So(t) = s(1)—07215,(t—120)-0.628 s5,(t— 180)

..... (17)
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Fig. 2. Pumping ra es, measured drawdowns, and calculated
constant-rate draw Jowns for a three-stap pumping test at
luka, Illinois (see 1able 1).
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Table 1, Measured Drawdowns and Calculated
Constant-Rate Drawdowns for Well No. 2; Pumping Test at
luka, Hlinois (Field Data from Walton, 1970, p. 348)
Data Points Indicated by Asterisks Are Interpolated
from Data Given by Waiton

s so(t—120) so(t—180)  soft)
t, minutes =~ — — — — — — — — — m—-————————
0 0 0 0 0
10 .003* 0 0 .003
20 .014* 0 0 014
30 .030* 0 0 .030
40 043 0 0 .043
S0 .064 0 0 .064
60 .076 0 0 076
70 .088 0 0 .088
80 .098 0 0 .098
90 .107 0 0 107
100 .116 0 0 116
110 122° 0 0 122
120 .128 0 0 .128
130 .137 .003 0 135
140 152 .014 0 142
150 .180 .030 0 .158
160 .207 .043 0 176
170 .229 .064 0 183
180 .256 .076 0 201
190 274 .088 003 .209
200 .290 .098 014 211
210 .314 .107 .030 218
220 .347 116 .043 236
230 .387 .122 064 .259 ( :
240 .424 .128 .076 284 %L
250 .485 .135 .088 332

* Interpolated data points.

The calculations are summarized in Table 1, and
the calculated constant-rate drawdowns are shown
in Figure 2.

As discussed by Walton, the sharp increase of
drawdown in the observation well during the
second and third step occurred because the water
level in the pumping well declined below the top of
the aquifer. This transient seepage face implies that
the computed constant-rate drawdown curve is not
reliable in this case because the system is not time-
invariant; therefore, the principle of superposition
is not applicable. The undulations of the calculated
constant-rate curve (see Figure 2) are probably due
to this time-variance of the system.

Drawdown data for the recovery phase are
not available, else the computation of s4(t) could
have been carried on beyond 250 minutes, with
t; = 250 minutes and Q, = 0. It is likely that for
this particular case, there would have been a
marked discontinuity in the slope of the constant-
rate drawdown curve at the transition from the

3
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pumping phase 1o the recovery phase of the test.
Such a discontir uity would provide a direct indica-
tion that the conditions for applicability of the
superposition principle were not satisfied.

Constant-Rate Pumping Test Near Estevan,
Saskatchewan

Equation (10) was applied to drawdown and
recovery data fcr a 41,520 minute (approximately
29 days) pumping test carried out in 1984, near
Estevan, Saskatchewan (van der Kamp, 1985).
Water levels were measured for the subsequent six
months. The pu nping well was completed in a con-
fined buried-valley aquifer system described by
Walton (1970, pp. 543-564). The hydrogeologicil
setting of the aquifer is complex, and drawdown
curves cannot b« expected to follow any available
theoretical type curves.

The measu ‘ed drawdowns in observation well
11L-84 are shovn in Figure 3 together with the
extrapolated constant-rate drawdowns calculated
by means of equation (10). The calculations of the
extrapolated dr: wdowns are summarized in Table
2. For example, the constant-rate drawdown at
t = 3t, = 124,560 minutes equals the sum of the
measured drawdowns at 3t,, 2t,, and t,:
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Fig. 3. Measured diawdowns and calculated constant-rate
" drawdowns for observation well 11L-84 during a pumping
test near Estevan, ¢ askatchewan (see Table 2},

Table 2, Summary of Drawdown Data and Possible Error
Data for Observation Well 11L-84 During Pumping Test
Near Estevan, Saskatchewan, 1984-1985
[Duration of pumping was 41,520 minutes; n is the
number of complete pumping periods that have elapsed
(field data from van der Kamp, 1985}]

s e So E
t, minutes n @ ——————— m ———————
0 0 0 0 0 o
10,380 0 1.75 .10 1.75 .10
20,760 o 3.02 .10 3.02 .10
31,140 1] 4.00 .10 4.00 .10
41,520 1 4.70 .10 4.70 .10
51,900 1 3.65 .10 5.40 .20
62,280 1 3.07 .10 6.09 .20
72,660 1 2.60 .10 6.60 20
83,040 2 2.26 10 6.96 .20
124,560 3 1.52 .10 8.48 .30
166,080 4 1.18 .10 9.66 .40
207,600 5 .95 .10 10.61 .50
249,120 6 .76 .10 11.37 .60
290,640 7 .68 .10 12.05 .70

$o(3t;)=1.52+2.26 + 4.70 = 8.48 meters (see
Figure 3). The values of measured drawdowns
tabulated in Table 2 were obtained by interpolation
between the irregularly spaced data points, as
indicated in Figure 3. :

Long-term water-level records for the aquifer
show that the static water level may vary by 15 to
20 cm during a year (Meneley etal., 1979). Thus,
the possible error in the values of drawdown can
be taken to be £0.10 m. The accumulated possible
errors are shown by the error bars in Figure 3.

For the aquifer test data plotted in Figure 3,
it can be seen that the use of recovery data
lengthened the useful duration of the aquifer test
from one month to more than six months. This
was possible because significant drawdowns per-
sisted for at least six months after pumping had
stopped. (In this case, the long-lasting drawdown
effect occurred because the aquifer is confined by
a thick aquitard of very low permeability, which
allows only minimal recharge to the aquifer.)

DISCUSSION

Limitations on Use of the Method

The method for calculating constant-rate
drawdown curves which is described in this paper is
only applicable if the ground-water system is linear
and time-invariant. This is the major theoretical
limitation on usc of the method.

Linearity of the system means that the
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ground-water flcw must be governed by Darcy’s
law and that there must be a linear proportionality
between change of hydraulic head and release of
water from stor: ge. Thus, the use of the method
for drawdown and recovery in a pumped well will
not be valid if non-Darcian (nonlinear) well losses
are significant. Similarly, the method should not be
used if the relea: e of water from storage is not
linearly proportional to head change or is different
for falling head «.nd for rising head as may, for
instance, be the :ase for water-table aquifers.

Time-invariance of the system means that the
geometry and hydraulic properties of the system
must not change with time. Thus, for example, the
method will give unreliable results if a significant
part of the systen is dewatered during the course
of the test. Also the hydraulic conductivity and
the storage coeflicient should not be dependent on
hydraulic head tecause the variation of head during
pumping would :hen result in a corresponding
time-variance of the system. For example, if the
system includes sressure-sensitive fractures,
hydraulic condu :tivity may vary considerably in
time as the fluid pressure changes. Such a system
would not satisf’ the condition of time-invariance.

Time-invariince of the system also implies
that the boundary conditions must remain constant
or that changes «f boundary conditions are explicit-
ly taken into account. For example, the relative
magnitude of the inflow at each point of the well
screen should not vary during the course of the test.
If a transient see>age face develops in the produc-
tion well, then thé system is not time-invariant,
and the extrapolited constant-rate drawdowns may
not be meaningful. The case of the three-step test
near luka, Illinois, discussed in this paper, provides
an example of this effect.

In practice, it may be difficult to judge
whether a particilar ground-water system can
safely be treated as linear and time-invariant.
Fortunately the nethod carries a built-in check: if
the calculated ccnstant-rate drawdown curves show
marked undulatins, or abrupt changes of slope
associated with [oints in time when the pumping
rate changed, then nonlinearity or time-variance of
the system are indicated. This particular feature of
the extrapolated constant-rate drawdown curves
allows a sensitive check on the conditions of
linearity and tim :-invariance which are implicit in
many commonly used theoretical models. It may
turn out that these assumptions are not as widely
applicable as is commonly assumed.

The methoc can accommodate well-bore
storage, but only if flow into the well and storage
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in the well are governed by linear laws. In practice,
observation wells can usually be considered as part
of the ground-water system, but production wells
cannot be included because drawdowns in produc-
tion wells are commonly influenced by nonlinear
well losses. The expression ‘“‘constant pumping
rate” as used here normally refers to pumping from
the formation, but may refer to pumping from a
production well if well-bore storage is negligible or
if nonlinear well losses are negligible. ‘““Drawdown”
refers to drawdown in the observation wells or
drawdown in the formations, which may or may
not be the same, depending on the response
characteristics of the wells.

The method does not require a theoretical
expression for the drawdown. Hence, it can
accommodate irregular aquifer geometry, bound-
aries, partial penetration, anisotropy, and heteroge-
neity. It can accommodate fluids of different
densities and viscosities within the system, but only
if the fluid properties at any point in the system
do not vary in time during the course of the pump-
ing test. The method can also be applied for draw-
downs in neighboring aquitards and aquifers.

The method is limited to stepped-rate tests.
For the case of continuously varying pumping rates
described by equation (14), the identification
problem is much more difficult (Dooge, 1973).
This difficulty can be avoided for ground-water
systems by varying the pumping rate in discrete
steps (a constant-head tank or similar devices can
be used if pumping rate tends to vary with draw-
down, e.g., Gale and Welhan, 1975).

The accumulation of errors is likely to be a
major practical constraint on use of the proposed
method. Special attention should therefore be paid
to accurate measurement of the pumping rates,
times of pumping-rate changes, water levels, and
trends and fluctuations of the natural static water
level. If possible, water-level measurements should
be continued beyond the time when complete
recovery is judged to have been attained, so as to
obtain a reliable evaluation of trends in the static
water level. Accurate measurement of pumping
rates is particularly important if the method is to
be used for a step-drawdown test because the
calculated drawdown depends on the relative
magnitude of the pumping rate for each step [see
equation (2)]. For analysis of the recovery after a
constant-rate test, high priority should be given to
keeping the pumping rate constant; the absolute
magnitude of the pumping rate is likely to be of
lesser importance when it comes to interpretation
of the data.



Applications of the Method

The most common and useful application of
the method will >robably be in the analysis of data
for the recovery phase of constant-rate pumping
tests. Other poss ble applications can be envisioned.
It may, for instance, be possible to combine step-
drawdown tests ‘vith aquifer performance tests.
For such an application, the pumping rate would
be varied in a small number of steps which together
comprise the full duration of the test. The draw-
down in the pum ping well could then be analyzed
for well efficiency, and the calculated constant-rate
curves for the ot servation wells could be used to
analyze the hydraulics of the ground-water system.
Another potentiil application could be in cases
where a constant-rate pumping test is inadvertently
interrupted by a temporary break in pumping. If
the beginning an i end of the interruption are
known, the test ::an be continued to its planned
duration, and it :hould be possible to calculate a
constant-rate dreswdown curve with little loss of
information.

~ As mentioned at the outset, recovery data
can be analyzed >y using available type curves to
generate families of drawdown-recovery type
curves. Such an ¢ pproach was used by Ramey
(1980) for analy sis of pressure buildup tests and by
Mishra and Chacnadi (1985) for the analysis of
flow to a large-d ameter well. However, each
individual drawdown type curve then leads to a
family of drawdown-recovery type curves, and
resulting multipl.city of type curves can become
hard to oversee. The approach described here for
analysis of recovery data is mathematically
equivalent and m.ay be easier to use.

Due to economic constraints, the duration of
pumping for an :.quifer test is frequently shorter
than one would ike. Analysis of recovery data by
means of the method described here may allow one
to obtain consid rable additional information from
an aquifer test. The essential point is that the
duration of an ajuifer test should not be considered
to be equal to the duration of pumping, but should
be taken to be the full length of time during which
reliable drawdov'n measurements can be obtained.
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The form of the salvhon presented by van der Kamp (Hb‘?)
Is derived A\f exfaandmj the discrehzed form of the cmvalu-han
tn'l:esraf

‘£.—'£S’ ‘é ‘t‘.}‘z .
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0
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Maklng a CAahae of "fermnsa/gsy :

«, f-G(g)JE = s (%) ~‘(7)

the solrhon for the drawdeown becomes :

S(Rt) = S (8) + (8e=8)) 5, (¢-ts,)
Q

‘ + (Q;,-—Q-,_) s (i-.-i:s,)-:- ‘.. (&m-@m-r) 5, (‘*—'ii’m)
| Q, Q,

—®)

| —> THIS IS van der KAMPS ran (1).

. Re‘fvrnlnj to svmmahon notahon , Van der Kam,:'-l‘ Ea? (1)

1 becomes :

.

NP
s(ryt) = 5y (2) + 2 (Qc"' Q) s, (i-'ts‘-)
(=2 '_a‘—‘—

'
- B ST

Sclwnj for Sy (t) ynelc(.r :

=2

ot TR THIS IS van der KAMP's  Eme (2). /

» | |
t) = — Ql" 0(—' ~ts. )
508 = s(rt)y— > ‘ ”62, 1) 5, (d-ts;) - —l)
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A GENERAL METHOD FOR USING RECOVERY
DATA FOR PUMPING TESTS IN COMPLEX
HYDROGEOLOGICAL SETTINGS
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ABSTRACT

Collection of water-level recovery data is a common practice for pumping tests. The resulting data can provide some of
the most useful information from the tests, but are rarely used to their full value. van der Kamp (1989) proposed a
general method for the interpretation of recovery data that is easy to use and applicable for simple or complex
hydrogeology, depending only on the principle of superposition. No other assumptions about the properties and
geometry of the formations are required. The method can greatly increase the value of pumping tests by extending their
effective duration for as long as significant residual drawdowns can be measured.

RESUME

La collection de données de rétablissement de niveau d'eau est une pratique commune pour des essais de pompage.
Les données en résultant peuvent fournir une grande partie des informations les plus utiles des essais, mais sont
rarement employées a leur pleine valeur. van der Kamp (1989) a proposé une méthode générale pour l'interprétation des
données de rétablissement qui est facile a utiliser et qui est applicable pour hydrogéologie simple ou complexe,
dépendant seulement du principe de la superposition. Aucune autre assomption au sujet des propriétés et géométrie des
formations sont exigées. La méthode peut considérablement augmenter la valeur des essais de pompages en
prolongeant la durée efficace des essais, aussi long que des abaissements résiduels significatifs peuvent étre mesurés.

1 INTRODUCTION

Guidance documents for conducting pumping tests
typically require that water levels be monitored for a
specified time following the end of pumping. In our
experience, frequently nothing is done with the recovery
data after they have been collected, plotted, and included
in the appendix to a report. In most cases, the cursory
treatment of recovery data represents a genuine loss.
Recovery data frequently provide some of the most
reliable information from pumping tests.

The traditional approach to interpreting recovery data has
involved the application of the Theis model of aquifer
response with the Cooper-Jacob approximation of the
Theis well function (Cooper and Jacob, 1946). It assumes
an ideal, confined aquifer of infinite extent, which is rarely
encountered in practice, even approximately. The Cooper-
Jacob straight-line analysis has a particularly simple
implementation for recovery analysis:

S= g O _t [1]
1 T glO {t -t }

7 off

In Equation [1], s is the drawdown, Q is the pumping rate
(assumed constant during pumping), T is the
transmissivity, t is the elapsed time since the start of
pumping, and tef is the duration of pumping. Equation [1]
can be used directly to estimate the transmissivity from
the slope of the semi-log plot. Apart from the assumption
of an ideal confined aquifer, this approach essentially
breaks the pumping test up into two independently
analyzed portions, the pumping period and the recovery
period. These may or may not give comparable results for
the transmissivity of the aquifer, depending on how well
the assumption of an ideal aquifer is met, even though
they apply to the same well-aquifer system.

van der Kamp (1989) introduced a different approach for
working with recovery data. The approach is based only
on the principle of superposition and does not require
other assumptions about the hydraulic properties and
geometry of the aquifer and adjacent formations. The
approach provides a straightforward and useful extension
of existing methods. It allows consideration of the
pumping and recovery periods together, essentially
extending the effective duration of the pumping test to as
long as measurable drawdown persists. Our experience
suggests that van der Kamp’s approach has been largely
overlooked. As far as we are aware, it has not been
implemented in any of the widely used interpretation
packages. This is an important oversight and this note has
been prepared in part to renew interest in this approach.
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2 DEVELOPMENT OF THE GENERAL THEORY

For a general linear conceptual model, the drawdown
s(r,t) caused by pumping at a variable rate Q(t) can be
written as:

s(r,t)=|Q(7)G(r,t—7)dr [2]

O C—

Equation [2] is a general statement of the principle of
superposition, and is referred to as a convolution integral.
The term G(r,t) represents the drawdown at a distance r
caused by pumping for an instant at time t=0, and is
frequently referred to as the Green’'s function for a
particular problem. van der Kamp’s method considers an
arbitrary pumping history represented by a set of discrete
steps, as shown in Figure 1.

Q
i
@mz‘ 4G
Gz _GHF
| G:i‘ |
AQ, R .
Q, :
:'hmef
At

T e e
ts, tsy tsw-1 towp

Figure 1. Discrete representation of an arbitrary pumping
history

The equivalent constant-rate drawdown, s, is defined as
the drawdown that would be observed at time t if the
pumping rate had remained constant at a rate Qi. For an
arbitrary step pumping history, it follows from Equation [2]
that the equivalent constant-rate drawdown is given by:

S(r)=s(r.1)-
(Qz_Ql)S(ryt_tSZ)_{_m_{_(QNP_QNP—l)Sl(

Q ) "it-tse)

(3]

In principle it is possible to reduce the drawdown data
from any pumping test with varying pumping rates to the
equivalent drawdown that would have been observed if
the pumping rate had remained constant. This general
principle depends only on the principle of superposition,
and assumes only mathematical “linearity” of the
equations that govern the flow. Linearity in turn means
that the hydraulic properties of the formations do not
change and that the boundary conditions remain constant
(e.g., no dewatering of the formations).

3 APPLICATION FOR PUMPING AT A CONSTANT
RATE FOLLOWED BY RECOVERY

Although the general form of the van der Kamp (1989)
algorithm appears to be relatively complicated, it is
particularly simple for the analysis of recovery following
pumping at a constant rate. This is by far the most
common pumping test practice. For this case, during the
recovery period NP = 2, ts» = torr, and Q2 = 0, and van der
Kamp’s general form reduces to:

s(r.t)=s(r,t)+s(rt-ty) (4]

This result can be interpreted directly: if pumping had
continued, the drawdown at any time t would be equal to
the actual drawdown at time t plus the drawdown
observed at time t-to. Note that Equation [4] is not just
limited to a recovery period that has the same duration as
pumping. It can be applied for as long as the measured
drawdown s(r,t) is significant compared to the possible
errors of measurement and uncertainties in what the
water level would have been in the absence of pumping.

To illustrate the method, an idealized case of a well that
penetrates the full thickness of an ideal confined aquifer is
considered. The following parameter values are assumed:
transmissivity, T = 10™ m%sec; storativity, S = 107
pumping rate, Q = 1.7x10° m%sec; duration of pumping,
totf = 250 seconds; and radial distance, r = 10 m.

The calculated drawdown history is plotted in Figure 2.

20 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1

Drawdown (m)
=
o
|
\

0 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T

0 100 200 300 400 500 600 700 800 900 1000
Time (secs)

Figure 2. Calculated drawdown during pumping and
recovery
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To demonstrate the van der Kamp approach, the
drawdown that would have been observed after
400 seconds if pumping had continued at a constant rate
is calculated. The equivalent constant-rate drawdown at
t = 400 seconds is given by:

5 (t=400s) = s(t =400s) +5 (t—t,, =150s) [5]

At t = 400 seconds, the observed drawdown plotted in
Figure 2 is 1.33 m. At t= 150 seconds, the well is still
pumping; therefore s; = s and the drawdown estimated
from Figure 2 is s;(t =150 s) = 15.98 m. The equivalent
drawdown is therefore:

s (t=400s)=1.33m+1598m=17.31m (6]

The calculation is illustrated in Figure 3.

O 17.31m

Drawdown (m)
o
.
|
|
|
|
|
|
|
|
|
|
|

-s(rt-ty)

-20 T { T { T { T { T

0 100 200 300 400 500
Time (secs)
Figure 3. Calculation of equivalent constant-rate

drawdown at 400 seconds

The results of applying the van der Kamp method for all of
the results of the example are plotted in Figure 4.

20\‘\‘\‘\‘\‘\‘\‘\‘\‘\
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\

5 — Observed —
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0 100 200 300 400 500 600
Time (secs)
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Figure 4. Actual drawdown and equivalent constant-rate
drawdown

A simple but widely applicable illustration of the potential
utility of the method can be drawn from the above
example. Consider a pumping test with recovery data
taken for the same time after pumping as the duration of
pumping. The standard 24-hour test with 24 hours of
recovery is a case in point. The residual drawdown after
24 hours of recovery is equal to the additional drawdown
that would have occurred between 24 and 48 hours if
pumping had continued. The one data point obtained after
24 hours of recovery already doubles the effective length
of the pumping test, especially if further analysis is based
on methods making use of semi-log or log-log plots of
drawdown versus time. Numerous “24-24" pumping test
analyses could make good use of this simplest of
calculations. Other data points can also be calculated, as
illustrated in Figures 3 and 4.

An additional advantage of making full use of the recovery
data is that “noise” introduced into the drawdown data by
irregularities of the pumping rate is much reduced during
the recovery phase.

Page 3 of 5



4 CASE STUDY

The utility of the van der Kamp approach is demonstrated
by using the recovery data to extend the effective duration
of a pumping test conducted in a confined buried-channel
aquifer near Estevan, Saskatchewan. The test was
conducted in 1984 and was reported in van der
Kamp (1985; 1989). The aquifer is described in Walton
(1970), van der Kamp and Maathuis (2002), and Maathuis
and van der Kamp (2003). This is a complex semi-
confined channel aquifer, involving complicating factors
such as several intersecting channels, partial blockages,
lateral inflow from surrounding formations and unknown
regional permeability of the overlying glacial till aquitard.
No simple analytical aquifer model could be expected to
apply and the numerical model that was developed was
highly unconstrained.

The aquifer was pumped at a constant rate for
41,520 minutes (about 29 days), and water levels
following the end of pumping were monitored for an
additional 249,000 minutes (173 days). Drawdowns at
observation well 11L-84 during the pumping and recovery
periods are shown in Figure 5 (data from Figure 3 of van
der Kamp, 1989). For subsequent analysis, the original
observations are supplemented with interpolated values
indicated by the crosses. The interpolated drawdown
observations, taken from van der Kamp (1989; Table 2),
are smoothed slightly with respect to the original
observations.
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Figure 5. Raw drawdown data

Complete results obtained from applying van der Kamp'’s
method are shown in Figure 6.
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Figure 6. Equivalent constant-rate drawdowns

In this example, the use of recovery data lengthens the
useful duration of the pumping test from one month to
more than six months. The implications of this extension
are best illustrated by plotting the raw drawdowns and the
equivalent constant-rate drawdowns against the logarithm
of time, as shown in Figure 7.
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Figure 7. Semi-log plot raw and equivalent drawdown data

Page 4 of 5



As shown in Figure 7, even after 29 days of pumping it is
only possible to identify the beginning of the long-term
trend of the drawdown. In contrast, the accelerating trend
that is characteristic of a buried-channel aquifer is clearly
evident in the equivalent constant-rate drawdowns. The
drawdown at the end of pumping is 4.70m. The
equivalent constant-rate drawdown for the last recorded
water level is 12.05 m.

The application of the van der Kamp analysis in this
example is possible because significant drawdowns
persisted more than six months beyond the end of
pumping. The persistent drawdown reflects the conditions
of the aquifer: the buried-channel aquifer is overlain by a
thick aquitard of low conductivity, which allows only
minimal recharge to the aquifer.

Subsequently the aquifer was pumped at a high rate for 6
years to supply cooling water for a coal-fired power plant
(Maathuis and van der Kamp, 2003). The long-term
drawdown due to such pumping was predicted on the
basis of the 6 months of extrapolated drawdown illustrated
in Figure 7, and the actual measured drawdown agreed
closely with the prediction.

6 DISCUSSION

Robust and inexpensive pressure transducers have
become widely available in recent years. These can be
left securely in observation wells without requiring the
continuous on-site presence of field staff. The collection of
extended recovery data has therefore become easier and
more economical. It may become standard practice to
record water level data after the cessation of pumping for
as long as it takes to attain full recovery. Such long-term
monitoring of recovery has the additional advantage that it
may allow a more robust estimate of changes of the
“static” water level during the pumping and recovery
period.

The authors’ experience with pumping tests suggests that
the general method for the analysis of recovery data
described in van der Kamp (1989) could have enhanced
the value of almost every pumping test that they have
encountered, with only minor additional effort in data
analysis. Full recognition and exploitation of the potential
value of recovery data is therefore recommended to all
practitioners.
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Using Recovery Data to Extend the Effective
Duration of Pumping Tests

by Christopher J. Neville! and Garth van der Kamp?

Abstract

Collection of water-level recovery data is a common practice for pumping tests. The resulting data can
provide some of the most useful information from the tests, but are rarely used to their full value. van der Kamp
(1989) proposed a general method that uses recovery data to extend the effective duration of pumping. The
method is straightforward to implement and applicable for simple or complex hydrogeologic settings. The only
assumption invoked is that the response remains linear such that the principle of superposition can be applied. No
other assumptions about the properties of the aquifer are required. The method can greatly increase the value of
pumping tests by extending the effective duration of the tests for as long as significant residual drawdowns are

observed.

Introduction

Guidance documents for conducting pumping tests
typically require that water levels be monitored for a
specified time following the end of pumping. In our expe-
rience, frequently nothing is done with the recovery data
after they have been collected, plotted, and included in the
appendix to a report. In most cases, the cursory treatment
of recovery data represents a genuine loss. Recovery data
frequently provide some of the most valuable information
from pumping tests.

The traditional approach to interpreting recovery data
has involved the application of the Theis model of aquifer
response with the Cooper-Jacob approximation of the
Theis well function (Theis 1935; Cooper and Jacob 1946).
The aquifer is assumed to be confined, homogeneous
and isotropic and of infinite extent. This approach essen-
tially breaks the pumping test up into two independently
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analyzed portions, the pumping period and the recov-
ery period. The separate analyses may or may not give
comparable results for the transmissivity of the aquifer,
depending on how well the assumption of an ideal aquifer
is met, even though they are applied to the same well-
aquifer system.

van der Kamp (1989) introduced a different approach
for working with recovery data, which makes use of
the principle of superposition and does not require other
assumptions about the hydraulic properties and geome-
try of the aquifer and adjacent formations. The approach
provides a straightforward and useful extension of exist-
ing methods. It allows consideration of the pumping and
recovery periods together, extending the effective duration
of the pumping test to as long as measurable drawdown
persists. Our experience suggests that van der Kamp’s
approach has been largely overlooked. As far as we are
aware it has not been implemented in any of the widely
used interpretation packages. In our opinion this is an
important oversight, and this note has been prepared to
renew interest in this approach.

Method and Application

van der Kamp (1989) defined an equivalent constant-
rate drawdown, sy, as the drawdown that would be

GROUND WATER 1



observed at time ¢ if the pumping rate had remained
constant at its initial rate Q. van der Kamp’s method
considers an arbitrary pumping history represented by a
set of discrete steps. For the case of pumping at a constant
rate followed by recovery, van der Kamp’s general form
reduces to

s1(xi, 1) = s(x;, 1) +s1(x;, 1 — tofp) (D

where s(x;, t) is the observed drawdown at the observa-
tion well, x; are the coordinates of the observation well,
t the total elapsed time since the start of pumping, and 7o
the duration of pumping. This result has a direct physical
interpretation: if pumping had continued, the drawdown
at any time ¢ would be equal to the drawdown observed
at time ¢ plus the drawdown observed at time ¢ — tof.
Equation 1 is not limited to a recovery period equal to
the duration of pumping, but can be applied for as long
as the observed drawdown s(r,f) is significant compared
to the possible errors of measurement and uncertainties in
what the water level would have been in the absence of
pumping.

The application and utility of van der Kamp’s
approach is demonstrated by making use of the recovery
data from a pumping test conducted in a confined buried-
channel aquifer near Estevan, Saskatchewan. This is a
complex semi-confined channel aquifer, involving compli-
cating factors such as several intersecting channels, partial
blockages, lateral inflow from surrounding formations and
an unknown regional permeability of the overlying glacial
till aquitard (Walton 1970; van der Kamp and Maathuis
2011). The test was conducted in 1984 and was reported
in van der Kamp (1985, 1989). The aquifer was pumped
at a constant rate of 0.076 m>/s for 41,520 min (about
29 d), and water levels were monitored for an addi-
tional 249,000 min (173 d). Drawdowns at observation
well 11L-84 during the pumping and recovery periods are
shown in Figure 1. The original observations are supple-
mented with smoothed interpolated values indicated by the
crosses (values are taken from Table 2 of van der Kamp
1989).

The calculation of the equivalent drawdown at any
time beyond the end of pumping is straightforward. For
example, after 83,040 min, the observed drawdown was
2.26 m. The drawdown at the end of pumping, t = 41,520
min, was 4.70 m. Therefore, if pumping had continued,
the drawdown that would have been observed if pumping
had been twice as long is

s1(t = 83,040 min) = s(r = 83,040 min)
+ 51(t = 83,040 min — 41,520 min)
=226 m+4.70 m = 6.96 m.
The method can be applied beyond a time correspond-
ing to twice the original duration of pumping, as long as
there are observed drawdowns. In this example, beyond

41,520 min, use is made of the calculated equivalent
constant-rate drawdowns. For example, after 124,560 min
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Figure 1. Drawdowns at observation well 11L.-84 during the
pumping and recovery periods.

the observed drawdown was 1.52 m. This corresponds
to 83,040 min beyond the end of pumping. The equiv-
alent constant-rate drawdown after 83,040 min calculated
above is 6.96 m. Therefore, the constant-rate drawdown
after 124,560 min is

s1(f = 124,560 min) = s (¢ = 124,560 min)
+ 51( = 124,560 min — 41,520 min)
= 1.52 m+ 6.96 m = 8.48 m.

Complete results obtained by applying van der
Kamp’s method are shown in Figure 2.

Insights from Application of the van der Kamp
Method

In the Estevan example, the use of recovery data to
calculate equivalent constant-rate drawdowns lengthens
the effective duration of the pumping test from 1 month
to more than 6 months. The implications of this extension
are best illustrated by plotting the drawdowns for multi-
ple observation wells. As shown in Figure 3, even after
29 d of pumping it is only possible to identify the begin-
ning of the long-term trends in the drawdown records.
In contrast, the extended drawdown records plotted in
Figure 4 show clear increasing trends that are character-
istic of buried-channel aquifers. The dashed lines plotted
in Figure 4 represent a match to the data with the Theis
solution with T = 0.023 m?/s and S = 10~*, assuming
parallel impermeable valley walls 400 m on either side of
the pumping well. The application of the van der Kamp
analysis in this example is possible because significant
drawdowns persist more than 6 months beyond the end
of pumping. The equivalent drawdowns provide insights
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Figure 2. Complete results obtained by applying van der
Kamp’s method.
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Figure 3. Composite plot of drawdowns for four observation
wells.

for the diagnosis of the aquifer system that are not obvious
from the drawdown records.

Conclusion

The authors’ experience with pumping tests suggests
that application of the general method for the treatment
of recovery data described by van der Kamp (1989) could
have enhanced the value of almost every pumping test that
they have encountered, with only minor additional effort
in data analysis.
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Compact, robust, and inexpensive pressure transduc-
ers are now widely available. These can be left securely
in observation wells without requiring the continuous on-
site presence of field staff. The collection of extended
recovery data has therefore become much easier and more
economical. It may become standard practice to record
water-level data after the cessation of pumping for as long
as it takes to attain full recovery. Just one application of
recovery data is described in this note. Long-term mon-
itoring of recovery may allow a more robust estimate of
changes of the ambient water level during the pumping
and recovery period. Making full use of recovery data
reduces the significance of the “noise” introduced into the
drawdown data by irregularities in the pumping history.
Recovery data are also important for identifying processes
that may give rise to changes in water levels during a
pumping test that are not caused by pumping, including
the effects of nearby pumping, fluctuations in barometric-
pressure and earth tides, and can be used to check the
calibration of the pressure transducers. Full recognition
and exploitation of the potential value of recovery data
are recommended to all practitioners.
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